These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 2556103)

  • 21. Differential involvement of the central amygdala in appetitive versus aversive learning.
    Knapska E; Walasek G; Nikolaev E; Neuhäusser-Wespy F; Lipp HP; Kaczmarek L; Werka T
    Learn Mem; 2006; 13(2):192-200. PubMed ID: 16547163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hippocampus, amygdala, and memory deficits in rats.
    Sutherland RJ; McDonald RJ
    Behav Brain Res; 1990 Feb; 37(1):57-79. PubMed ID: 2310495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exposure to retrieval cues improves retention performance and induces changes in ACTH and corticosterone release.
    Gisquet-Verrier P; Botreau F; Venero C; Sandi C
    Psychoneuroendocrinology; 2004 May; 29(4):529-56. PubMed ID: 14749097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous modulation of retrieval by dopaminergic D(1), beta-noradrenergic, serotonergic-1A and cholinergic muscarinic receptors in cortical structures of the rat.
    Barros DM; Mello e Souza T; De David T; Choi H; Aguzzoli A; Madche C; Ardenghi P; Medina JH; Izquierdo I
    Behav Brain Res; 2001 Sep; 124(1):1-7. PubMed ID: 11423160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Depletion of adrenal catecholamines alters the amnestic effect of amygdala stimulation.
    Bennett C; Liang KC; McGaugh JL
    Behav Brain Res; 1985 Apr; 15(2):83-91. PubMed ID: 3994834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissociation of brain sites necessary for registration and storage of memory for a one-trial passive avoidance task in the chick.
    Gilbert DB; Patterson TA; Rose SP
    Behav Neurosci; 1991 Aug; 105(4):553-61. PubMed ID: 1930723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system.
    Liang KC; Juler RG; McGaugh JL
    Brain Res; 1986 Mar; 368(1):125-33. PubMed ID: 3955350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lesions of the caudate nucleus selectively impair "reference memory" acquisition in the radial maze.
    Packard MG; White NM
    Behav Neural Biol; 1990 Jan; 53(1):39-50. PubMed ID: 2302140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible inactivation of the nucleus of the solitary tract impairs retention performance in an inhibitory avoidance task.
    Williams CL; McGaugh JL
    Behav Neural Biol; 1992 Nov; 58(3):204-10. PubMed ID: 1456942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pre- or post-training injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5-HT1A receptors.
    Liang KC
    Eur J Neurosci; 1999 May; 11(5):1491-500. PubMed ID: 10215901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential effects of a reminder cue on amnesia induced by stimulation of amygdala and hippocampus.
    Baker LJ; Kesner RP; Michal RE
    J Comp Physiol Psychol; 1981 Apr; 95(2):312-21. PubMed ID: 7229162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociation of arousal-like from anxiogenic-like actions of brain corticotropin-releasing factor receptor ligands in rats.
    Heinrichs SC; Joppa M
    Behav Brain Res; 2001 Jul; 122(1):43-50. PubMed ID: 11287075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning.
    Wichmann R; Fornari RV; Roozendaal B
    Neurobiol Learn Mem; 2012 Sep; 98(2):197-205. PubMed ID: 22750445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain stimulation: effects on memory.
    Kesner RP
    Behav Neural Biol; 1982 Dec; 36(4):315-67. PubMed ID: 6135412
    [No Abstract]   [Full Text] [Related]  

  • 35. Corticotropin-releasing factor and behavior.
    Koob GF; Bloom FE
    Fed Proc; 1985 Jan; 44(1 Pt 2):259-63. PubMed ID: 3871412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Memory retrieval enhancement by locus coeruleus stimulation: evidence for mediation by beta-receptors.
    Devauges V; Sara SJ
    Behav Brain Res; 1991 Apr; 43(1):93-7. PubMed ID: 1650233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variables affecting long-term memory of learning that a food is inedible in Aplysia.
    Schwarz M; Feldman E; Susswein AJ
    Behav Neurosci; 1991 Feb; 105(1):193-201. PubMed ID: 2025389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Corticotropin-releasing factor injected into the lateral septum improves memory function in rats.
    Lee EH
    Chin J Physiol; 1995; 38(2):125-9. PubMed ID: 8697897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The hippocampus and amygdala mediate the locomotor stimulating effects of corticotropin-releasing factor in mice.
    Lee EH; Tsai MJ
    Behav Neural Biol; 1989 May; 51(3):412-23. PubMed ID: 2543357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippocampal seizures disrupt working memory performance but not reference memory acquisition.
    Knowlton BJ; Shapiro ML; Olton DS
    Behav Neurosci; 1989 Oct; 103(5):1144-7. PubMed ID: 2803557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.