These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 25561288)
1. Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655. Tan J; Kan N; Wang W; Ling J; Qu G; Jin J; Shao Y; Liu G; Chen H Cell Biochem Biophys; 2015 Jun; 72(2):417-28. PubMed ID: 25561288 [TBL] [Abstract][Full Text] [Related]
2. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Yagur-Kroll S; Lalush C; Rosen R; Bachar N; Moskovitz Y; Belkin S Appl Microbiol Biotechnol; 2014 Jan; 98(2):885-95. PubMed ID: 23615740 [TBL] [Abstract][Full Text] [Related]
3. Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Yagur-Kroll S; Amiel E; Rosen R; Belkin S Appl Microbiol Biotechnol; 2015 Sep; 99(17):7177-88. PubMed ID: 25981994 [TBL] [Abstract][Full Text] [Related]
4. Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives. Shemer B; Yagur-Kroll S; Hazan C; Belkin S Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222096 [TBL] [Abstract][Full Text] [Related]
6. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Tao HC; Peng ZW; Li PS; Yu TA; Su J Biotechnol Lett; 2013 Aug; 35(8):1253-8. PubMed ID: 23609235 [TBL] [Abstract][Full Text] [Related]
7. A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Altamirano M; García-Villada L; Agrelo M; Sánchez-Martín L; Martín-Otero L; Flores-Moya A; Rico M; López-Rodas V; Costas E Biosens Bioelectron; 2004 May; 19(10):1319-23. PubMed ID: 15046765 [TBL] [Abstract][Full Text] [Related]
8. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection. Zhang D; Jiang J; Chen J; Zhang Q; Lu Y; Yao Y; Li S; Logan Liu G; Liu Q Biosens Bioelectron; 2015 Aug; 70():81-8. PubMed ID: 25796040 [TBL] [Abstract][Full Text] [Related]
9. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Chen XF; Xia XX; Lee SY; Qian ZG Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347 [TBL] [Abstract][Full Text] [Related]
10. Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Behzadian F; Barjeste H; Hosseinkhani S; Zarei AR Curr Microbiol; 2011 Feb; 62(2):690-6. PubMed ID: 20872219 [TBL] [Abstract][Full Text] [Related]
11. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection. Wang J Anal Biochem; 2018 Jun; 550():49-53. PubMed ID: 29655769 [TBL] [Abstract][Full Text] [Related]
12. Construction of Methanol-Sensing Ganesh I; Vidhya S; Eom GT; Hong SH J Microbiol Biotechnol; 2017 Jun; 27(6):1106-1111. PubMed ID: 28372037 [No Abstract] [Full Text] [Related]
13. Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Naal Z; Park JH; Bernhard S; Shapleigh JP; Batt CA; Abruña HD Anal Chem; 2002 Jan; 74(1):140-8. PubMed ID: 11795782 [TBL] [Abstract][Full Text] [Related]
14. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Norman A; Hestbjerg Hansen L; Sørensen SJ Appl Environ Microbiol; 2005 May; 71(5):2338-46. PubMed ID: 15870320 [TBL] [Abstract][Full Text] [Related]
15. Comparison of an antibody and its recombinant derivative for the detection of the small molecule explosive 2,4,6-trinitrotoluene. Liu JL; Zabetakis D; Acevedo-Vélez G; Goldman ER; Anderson GP Anal Chim Acta; 2013 Jan; 759():100-4. PubMed ID: 23260682 [TBL] [Abstract][Full Text] [Related]
16. Polymer-oligopeptide composite coating for selective detection of explosives in water. Cerruti M; Jaworski J; Raorane D; Zueger C; Varadarajan J; Carraro C; Lee SW; Maboudian R; Majumdar A Anal Chem; 2009 Jun; 81(11):4192-9. PubMed ID: 19476386 [TBL] [Abstract][Full Text] [Related]
17. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment. Zhen L; Ford N; Gale DK; Roesijadi G; Rorrer GL Biosens Bioelectron; 2016 May; 79():742-8. PubMed ID: 26774089 [TBL] [Abstract][Full Text] [Related]
18. Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Mahr R; von Boeselager RF; Wiechert J; Frunzke J Appl Microbiol Biotechnol; 2016 Aug; 100(15):6739-6753. PubMed ID: 27170323 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide gene-deletion screening identifies mutations that significantly enhance explosives vapor detection by a microbial sensor. Shemer B; Shpigel E; Glozman A; Yagur-Kroll S; Kabessa Y; Agranat AJ; Belkin S N Biotechnol; 2020 Nov; 59():65-73. PubMed ID: 32622861 [TBL] [Abstract][Full Text] [Related]
20. [Sensitivity of various escherichia coli strains to 2,4,6-trinitrotoluene]. Kurinenko BM; Denivarova NA; Iakovleva GIu Prikl Biokhim Mikrobiol; 2005; 41(1):53-7. PubMed ID: 15810733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]