These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 25561328)

  • 1. Microbial degradation of linear peptides by strain B-9 of Sphingosinicella and its application in peptide quantification using liquid chromatography-mass spectrometry.
    Miyachi A; Kondo F; Kurita M; Tsuji K; Harada K
    J Biosci Bioeng; 2015 Jun; 119(6):724-8. PubMed ID: 25561328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial degradation of cyanobacterial cyclic peptides.
    Kato H; Imanishi SY; Tsuji K; Harada K
    Water Res; 2007 Apr; 41(8):1754-62. PubMed ID: 17307215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase.
    Caughey GH; Leidig F; Viro NF; Nadel JA
    J Pharmacol Exp Ther; 1988 Jan; 244(1):133-7. PubMed ID: 2447273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Degradation of Amino Acid-Containing Compounds Using the Microcystin-Degrading Bacterial Strain B-9.
    Jin H; Hiraoka Y; Okuma Y; Hashimoto EH; Kurita M; Anas ARJ; Uemura H; Tsuji K; Harada KI
    Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29415445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1.
    Shimizu K; Maseda H; Okano K; Kurashima T; Kawauchi Y; Xue Q; Utsumi M; Zhang Z; Sugiura N
    J Biosci Bioeng; 2012 Dec; 114(6):630-4. PubMed ID: 22883536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial degradation of cyclic peptides produced by bacteria.
    Kato H; Tsuji K; Harada K
    J Antibiot (Tokyo); 2009 Apr; 62(4):181-90. PubMed ID: 19218981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Efficacy of Protease Inactivation for the Preservation of Bioactive Amphibian Skin Peptides.
    Samgina TY; Mazur DM; Lebedev AT
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR.
    Bourne DG; Riddles P; Jones GJ; Smith W; Blakeley RL
    Environ Toxicol; 2001; 16(6):523-34. PubMed ID: 11769251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a cadmium-releasing bacterium and characterization of its novel protease.
    Ren S; Tomita F; Yokota A; Asano K
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1627-33. PubMed ID: 15322344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel and Native Microcystin-Degrading Bacterium of Sphingopyxis sp. Isolated from Lake Taihu.
    Zhang J; Lu Q; Ding Q; Yin L; Pu Y
    Int J Environ Res Public Health; 2017 Oct; 14(10):. PubMed ID: 28984840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parathyroid hormone degradation by chymotrypsin-like endopeptidase in the opossum kidney cell.
    Yamaguchi T; Fukase M; Nishikawa M; Fujimi T; Fujita T
    Endocrinology; 1988 Dec; 123(6):2812-7. PubMed ID: 3058460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease inhibitors potentiate smooth muscle relaxation induced by vasoactive intestinal peptide in isolated human bronchi.
    Tam EK; Franconi GM; Nadel JA; Caughey GH
    Am J Respir Cell Mol Biol; 1990 May; 2(5):449-52. PubMed ID: 2187492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminomics: a high-content screen for protease substrates and their cleavage sites.
    Timmer JC; Salvesen GS
    Methods Mol Biol; 2011; 753():243-55. PubMed ID: 21604127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry.
    Radchenko T; Brink A; Siegrist Y; Kochansky C; Bateman A; Fontaine F; Morettoni L; Zamora I
    PLoS One; 2017; 12(11):e0186461. PubMed ID: 29091918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endosomal proteolysis of glucagon at neutral pH generates the bioactive degradation product miniglucagon-(19-29).
    Authier F; Cameron PH; Merlen C; Kouach M; Briand G
    Endocrinology; 2003 Dec; 144(12):5353-64. PubMed ID: 12959981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Tissue and regional distribution of activity of phenylmethylsulfonyl fluoride inhibited carboxypeptidase and other carboxypeptidases in rats].
    Shchetinina NV; Vernigora AN; Gengin MT; Firstova NV
    Ukr Biokhim Zh (1978); 1997; 69(3):23-8. PubMed ID: 9505357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposomal vasoactive intestinal peptide for lung application: protection from proteolytic degradation.
    Stark B; Andreae F; Mosgoeller W; Edetsberger M; Gaubitzer E; Koehler G; Prassl R
    Eur J Pharm Biopharm; 2008 Sep; 70(1):153-64. PubMed ID: 18555674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esterase inhibitors as ester-containing drug stabilizers and their hydrolytic products: potential contributors to the matrix effects on bioanalysis by liquid chromatography/tandem mass spectrometry.
    Zheng N; Fung EN; Buzescu A; Arnold ME; Zeng J
    Rapid Commun Mass Spectrom; 2012 Jun; 26(11):1291-304. PubMed ID: 22555922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly efficient protein degradation system in Bacillus sp. CN2: a functional-degradomics study.
    Lai Y; Li W; Wu X; Wang L
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):707-723. PubMed ID: 33386896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.