These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25561448)

  • 1. Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter.
    Jang DG; Park SH; Hahn M
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):256-62. PubMed ID: 25561448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers.
    Padilla JM; Berjano EJ; Sáiz J; Rodriguez R; Fácila L
    Cardiovasc Eng; 2009 Sep; 9(3):104-12. PubMed ID: 19657733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new two-pulse synthesis model for digital volume pulse signal analysis.
    Goswami D; Chaudhuri K; Mukherjee J
    Cardiovasc Eng; 2010 Sep; 10(3):109-17. PubMed ID: 20734136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital Photoplethysmography for Assessment of Arterial Stiffness: Repeatability and Comparison with Applanation Tonometry.
    von Wowern E; Östling G; Nilsson PM; Olofsson P
    PLoS One; 2015; 10(8):e0135659. PubMed ID: 26291079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A knowledge-based approach to arterial stiffness estimation using the digital volume pulse.
    Jang DG; Farooq U; Park SH; Goh CW; Hahn M
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):366-74. PubMed ID: 23853181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement.
    Kamoi S; Pretty C; Balmer J; Davidson S; Pironet A; Desaive T; Shaw GM; Chase JG
    Biomed Eng Online; 2017 Apr; 16(1):51. PubMed ID: 28438216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting arterial stiffness from the digital volume pulse waveform.
    Alty SR; Angarita-Jaimes N; Millasseau SC; Chowienczyk PJ
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2268-75. PubMed ID: 18075043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of age-related increases in large artery stiffness by digital pulse contour analysis.
    Millasseau SC; Kelly RP; Ritter JM; Chowienczyk PJ
    Clin Sci (Lond); 2002 Oct; 103(4):371-7. PubMed ID: 12241535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station.
    Li K; Zhang S; Yang L; Luo Z; Gu G
    Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of pulse rate variability obtained by the pulse onsets of the photoplethysmographic signal.
    Posada-Quintero HF; Delisle-Rodríguez D; Cuadra-Sanz MB; Fernández de la Vara-Prieto RR
    Physiol Meas; 2013 Feb; 34(2):179-87. PubMed ID: 23348575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection method to minimize variability in photoplethysmographic signals for timing-related measurement.
    Foo JY; Wilson SJ
    J Med Eng Technol; 2006; 30(2):93-6. PubMed ID: 16531348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of c, d, and e waves in the acceleration photoplethysmogram.
    Elgendi M
    Comput Methods Programs Biomed; 2014 Nov; 117(2):125-36. PubMed ID: 25176597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of wave reflection using peripheral blood pressure waveforms.
    Kim CS; Fazeli N; McMurtry MS; Finegan BA; Hahn JO
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):309-16. PubMed ID: 25561452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robust method for pulse peak determination in a digital volume pulse waveform with a wandering baseline.
    Jang DG; Farooq U; Park SH; Hahn M
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):729-37. PubMed ID: 25388880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of foot finding methods for deriving instantaneous pulse rates from photoplethysmographic signals.
    Hemon MC; Phillips JP
    J Clin Monit Comput; 2016 Apr; 30(2):157-68. PubMed ID: 25902897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of confounding factors on blood pressure estimation using pulse arrival time.
    Kim JS; Kim KK; Baek HJ; Park KS
    Physiol Meas; 2008 May; 29(5):615-24. PubMed ID: 18460767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prevalence of abnormal pulse wave velocity, pulse contour analysis and ankle-brachial index in patients with livedo reticularis: a controlled study.
    Sangle SR; Tanikawa A; Schreiber K; Zakalka M; D'Cruz DP
    Rheumatology (Oxford); 2013 Nov; 52(11):1992-8. PubMed ID: 23893524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence.
    Forouzanfar M; Ahmad S; Batkin I; Dajani HR; Groza VZ; Bolic M
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1814-24. PubMed ID: 23372068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive assessment of arterial stiffness by pulse wave analysis.
    Saito M; Matsukawa M; Asada T; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2411-9. PubMed ID: 23192804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contour analysis of the photoplethysmographic pulse measured at the finger.
    Millasseau SC; Ritter JM; Takazawa K; Chowienczyk PJ
    J Hypertens; 2006 Aug; 24(8):1449-56. PubMed ID: 16877944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.