These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 25561448)
1. Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter. Jang DG; Park SH; Hahn M IEEE J Biomed Health Inform; 2015 Jan; 19(1):256-62. PubMed ID: 25561448 [TBL] [Abstract][Full Text] [Related]
2. Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers. Padilla JM; Berjano EJ; Sáiz J; Rodriguez R; Fácila L Cardiovasc Eng; 2009 Sep; 9(3):104-12. PubMed ID: 19657733 [TBL] [Abstract][Full Text] [Related]
3. A new two-pulse synthesis model for digital volume pulse signal analysis. Goswami D; Chaudhuri K; Mukherjee J Cardiovasc Eng; 2010 Sep; 10(3):109-17. PubMed ID: 20734136 [TBL] [Abstract][Full Text] [Related]
4. Digital Photoplethysmography for Assessment of Arterial Stiffness: Repeatability and Comparison with Applanation Tonometry. von Wowern E; Östling G; Nilsson PM; Olofsson P PLoS One; 2015; 10(8):e0135659. PubMed ID: 26291079 [TBL] [Abstract][Full Text] [Related]
5. A knowledge-based approach to arterial stiffness estimation using the digital volume pulse. Jang DG; Farooq U; Park SH; Goh CW; Hahn M IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):366-74. PubMed ID: 23853181 [TBL] [Abstract][Full Text] [Related]
7. Predicting arterial stiffness from the digital volume pulse waveform. Alty SR; Angarita-Jaimes N; Millasseau SC; Chowienczyk PJ IEEE Trans Biomed Eng; 2007 Dec; 54(12):2268-75. PubMed ID: 18075043 [TBL] [Abstract][Full Text] [Related]
8. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Millasseau SC; Kelly RP; Ritter JM; Chowienczyk PJ Clin Sci (Lond); 2002 Oct; 103(4):371-7. PubMed ID: 12241535 [TBL] [Abstract][Full Text] [Related]
9. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station. Li K; Zhang S; Yang L; Luo Z; Gu G Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of pulse rate variability obtained by the pulse onsets of the photoplethysmographic signal. Posada-Quintero HF; Delisle-Rodríguez D; Cuadra-Sanz MB; Fernández de la Vara-Prieto RR Physiol Meas; 2013 Feb; 34(2):179-87. PubMed ID: 23348575 [TBL] [Abstract][Full Text] [Related]
11. Detection method to minimize variability in photoplethysmographic signals for timing-related measurement. Foo JY; Wilson SJ J Med Eng Technol; 2006; 30(2):93-6. PubMed ID: 16531348 [TBL] [Abstract][Full Text] [Related]
12. Detection of c, d, and e waves in the acceleration photoplethysmogram. Elgendi M Comput Methods Programs Biomed; 2014 Nov; 117(2):125-36. PubMed ID: 25176597 [TBL] [Abstract][Full Text] [Related]
13. Quantification of wave reflection using peripheral blood pressure waveforms. Kim CS; Fazeli N; McMurtry MS; Finegan BA; Hahn JO IEEE J Biomed Health Inform; 2015 Jan; 19(1):309-16. PubMed ID: 25561452 [TBL] [Abstract][Full Text] [Related]
14. A robust method for pulse peak determination in a digital volume pulse waveform with a wandering baseline. Jang DG; Farooq U; Park SH; Hahn M IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):729-37. PubMed ID: 25388880 [TBL] [Abstract][Full Text] [Related]