BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25561548)

  • 41. Nucleophosmin1 is a negative regulator of the small GTPase Rac1.
    Zoughlami Y; van Stalborgh AM; van Hennik PB; Hordijk PL
    PLoS One; 2013; 8(7):e68477. PubMed ID: 23874639
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluctuation-based imaging of nuclear Rac1 activation by protein oligomerisation.
    Hinde E; Yokomori K; Gaus K; Hahn KM; Gratton E
    Sci Rep; 2014 Feb; 4():4219. PubMed ID: 24573109
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational analysis of the spatiotemporal coordination of polarized PI3K and Rac1 activities in micro-patterned live cells.
    Lu S; Kim TJ; Chen CE; Ouyang M; Seong J; Liao X; Wang Y
    PLoS One; 2011; 6(6):e21293. PubMed ID: 21738630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Implication of Rac1 GTPase in molecular and cellular mitochondrial functions.
    Bailly C; Degand C; Laine W; Sauzeau V; Kluza J
    Life Sci; 2024 Apr; 342():122510. PubMed ID: 38387701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural details of light activation of the LOV2-based photoswitch PA-Rac1.
    Winkler A; Barends TR; Udvarhelyi A; Lenherr-Frey D; Lomb L; Menzel A; Schlichting I
    ACS Chem Biol; 2015 Feb; 10(2):502-9. PubMed ID: 25368973
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1.
    Matveeva EA; Venkova LS; Chernoivanenko IS; Minin AA
    Biol Open; 2015 Sep; 4(10):1290-7. PubMed ID: 26369929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-Particle Tracking for the Quantification of Membrane Protein Dynamics in Living Plant Cells.
    Cui Y; Yu M; Yao X; Xing J; Lin J; Li X
    Mol Plant; 2018 Nov; 11(11):1315-1327. PubMed ID: 30296600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clustering of Rac1: Selective Lipid Sorting Drives Signaling.
    Maxwell KN; Zhou Y; Hancock JF
    Trends Biochem Sci; 2018 Feb; 43(2):75-77. PubMed ID: 29198968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Principles and Applications of Single Particle Tracking in Cell Research.
    Wang Z; Wang X; Zhang Y; Xu W; Han X
    Small; 2021 Mar; 17(11):e2005133. PubMed ID: 33533163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of small molecule interactions with membrane proteins in single cells measured with mechanical amplification.
    Guan Y; Shan X; Zhang F; Wang S; Chen HY; Tao N
    Sci Adv; 2015 Oct; 1(9):e1500633. PubMed ID: 26601298
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A general method to improve fluorophores for live-cell and single-molecule microscopy.
    Grimm JB; English BP; Chen J; Slaughter JP; Zhang Z; Revyakin A; Patel R; Macklin JJ; Normanno D; Singer RH; Lionnet T; Lavis LD
    Nat Methods; 2015 Mar; 12(3):244-50, 3 p following 250. PubMed ID: 25599551
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discreet and distinct clustering of five model membrane proteins revealed by single molecule localization microscopy.
    Magenau A; Owen DM; Yamamoto Y; Tran J; Kwiatek JM; Parton RG; Gaus K
    Mol Membr Biol; 2015; 32(1):11-8. PubMed ID: 25586872
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical imaging. Expansion microscopy.
    Chen F; Tillberg PW; Boyden ES
    Science; 2015 Jan; 347(6221):543-8. PubMed ID: 25592419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging.
    Gao J; Wang Y; Cai M; Pan Y; Xu H; Jiang J; Ji H; Wang H
    Nanoscale; 2015 Feb; 7(6):2511-9. PubMed ID: 25569174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-performance probes for light and electron microscopy.
    Viswanathan S; Williams ME; Bloss EB; Stasevich TJ; Speer CM; Nern A; Pfeiffer BD; Hooks BM; Li WP; English BP; Tian T; Henry GL; Macklin JJ; Patel R; Gerfen CR; Zhuang X; Wang Y; Rubin GM; Looger LL
    Nat Methods; 2015 Jun; 12(6):568-76. PubMed ID: 25915120
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.
    Palayret M; Armes H; Basu S; Watson AT; Herbert A; Lando D; Etheridge TJ; Endesfelder U; Heilemann M; Laue E; Carr AM; Klenerman D; Lee SF
    PLoS One; 2015; 10(4):e0125438. PubMed ID: 25884495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D high- and super-resolution imaging using single-objective SPIM.
    Galland R; Grenci G; Aravind A; Viasnoff V; Studer V; Sibarita JB
    Nat Methods; 2015 Jul; 12(7):641-4. PubMed ID: 25961414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-molecule tracking and super-resolution imaging shed light on cholera toxin transcription activation.
    Landes CF
    Mol Microbiol; 2015 Apr; 96(1):1-3. PubMed ID: 25620046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fixation-resistant photoactivatable fluorescent proteins for CLEM.
    Paez-Segala MG; Sun MG; Shtengel G; Viswanathan S; Baird MA; Macklin JJ; Patel R; Allen JR; Howe ES; Piszczek G; Hess HF; Davidson MW; Wang Y; Looger LL
    Nat Methods; 2015 Mar; 12(3):215-8, 4 p following 218. PubMed ID: 25581799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural analysis of herpes simplex virus by optical super-resolution imaging.
    Laine RF; Albecka A; van de Linde S; Rees EJ; Crump CM; Kaminski CF
    Nat Commun; 2015 Jan; 6():5980. PubMed ID: 25609143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.