These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25561614)

  • 21. FRET-based Ca2+ measurement in B lymphocyte by flow cytometry and confocal microscopy.
    Adachi T; Tsubata T
    Biochem Biophys Res Commun; 2008 Mar; 367(2):377-82. PubMed ID: 18167311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protocol for measuring labile cytosolic Zn
    Holtzen SE; Rakshit A; Palmer AE
    STAR Protoc; 2024 Jun; 5(2):103130. PubMed ID: 38870018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors.
    Sprenger JU; Perera RK; Götz KR; Nikolaev VO
    J Vis Exp; 2012 Aug; (66):e4081. PubMed ID: 22929080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homotransfer of FRET Reporters for Live Cell Imaging.
    Snell NE; Rao VP; Seckinger KM; Liang J; Leser J; Mancini AE; Rizzo MA
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30314323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The GCaMP-R Family of Genetically Encoded Ratiometric Calcium Indicators.
    Cho JH; Swanson CJ; Chen J; Li A; Lippert LG; Boye SE; Rose K; Sivaramakrishnan S; Chuong CM; Chow RH
    ACS Chem Biol; 2017 Apr; 12(4):1066-1074. PubMed ID: 28195691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells.
    van Unen J; Stumpf AD; Schmid B; Reinhard NR; Hordijk PL; Hoffmann C; Gadella TW; Goedhart J
    PLoS One; 2016; 11(1):e0146789. PubMed ID: 26799488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual observation of the ATP-evoked small GTPase activation and Ca
    Nakahata Y; Nabekura J; Murakoshi H
    Sci Rep; 2016 Dec; 6():39564. PubMed ID: 28004840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.
    Aoki K; Matsuda M
    Nat Protoc; 2009; 4(11):1623-31. PubMed ID: 19834477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directed evolution of the genetically encoded zinc(II) FRET sensor ZapCY1.
    Wei T; Huang S; Hu Q; Wang J; Huo Z; Liu C; Lu S; Chen H
    Biochim Biophys Acta Gen Subj; 2022 Oct; 1866(10):130201. PubMed ID: 35835349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated screening of AURKA activity based on a genetically encoded FRET biosensor using fluorescence lifetime imaging microscopy.
    Sizaire F; Le Marchand G; Pécréaux J; Bouchareb O; Tramier M
    Methods Appl Fluoresc; 2020 Feb; 8(2):024006. PubMed ID: 32032967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetically Encoded FRET-Based Tension Sensors.
    Cost AL; Khalaji S; Grashoff C
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e85. PubMed ID: 30865383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation and Characterization of a New FRET-Based Ca
    Galla L; Vajente N; Pendin D; Pizzo P; Pozzan T; Greotti E
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment.
    Kolossov VL; Leslie MT; Chatterjee A; Sheehan BM; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2012 Jun; 237(6):652-62. PubMed ID: 22715429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical Comparison of FRET-Sensor Functionality in the Cytosol and Endoplasmic Reticulum and Implications for Quantification of Ions.
    Carter KP; Carpenter MC; Fiedler B; Jimenez R; Palmer AE
    Anal Chem; 2017 Sep; 89(17):9601-9608. PubMed ID: 28758723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics.
    Krebs M; Held K; Binder A; Hashimoto K; Den Herder G; Parniske M; Kudla J; Schumacher K
    Plant J; 2012 Jan; 69(1):181-92. PubMed ID: 21910770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging of Genetically Encoded FRET-Based Biosensors to Detect GPCR Activity.
    Bordes L; Chavez-Abiega S; Goedhart J
    Methods Mol Biol; 2021; 2268():159-178. PubMed ID: 34085268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.
    Zhang Y; Xie Q; Robertson JB; Johnson CH
    PLoS One; 2012; 7(8):e43072. PubMed ID: 22905204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence resonance energy transfer microscopy (FRET).
    Kedziora KM; Jalink K
    Methods Mol Biol; 2015; 1251():67-82. PubMed ID: 25391795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using FRET-Based Fluorescent Sensors to Monitor Cytosolic and Membrane-Proximal Extracellular ATP Levels.
    Kaschubowski KE; Kraft AE; Nikolaev VO; Haag F
    Methods Mol Biol; 2020; 2041():223-231. PubMed ID: 31646492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.