BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25561737)

  • 1. Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II.
    Noor SI; Dietz S; Heidtmann H; Boone CD; McKenna R; Deitmer JW; Becker HM
    J Biol Chem; 2015 Feb; 290(7):4476-86. PubMed ID: 25561737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4.
    Noor SI; Pouyssegur J; Deitmer JW; Becker HM
    FEBS J; 2017 Jan; 284(1):149-162. PubMed ID: 27860283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II.
    Becker HM; Klier M; Deitmer JW
    J Membr Biol; 2010 Apr; 234(2):125-35. PubMed ID: 20300744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells.
    Noor SI; Jamali S; Ames S; Langer S; Deitmer JW; Becker HM
    Elife; 2018 May; 7():. PubMed ID: 29809145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II.
    Klier M; Schüler C; Halestrap AP; Sly WS; Deitmer JW; Becker HM
    J Biol Chem; 2011 Aug; 286(31):27781-91. PubMed ID: 21680735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70.
    Forero-Quintero LS; Ames S; Schneider HP; Thyssen A; Boone CD; Andring JT; McKenna R; Casey JR; Deitmer JW; Becker HM
    J Biol Chem; 2019 Jan; 294(2):593-607. PubMed ID: 30446621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters.
    Klier M; Andes FT; Deitmer JW; Becker HM
    J Biol Chem; 2014 Jan; 289(5):2765-75. PubMed ID: 24338019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II.
    Becker HM; Klier M; Schüler C; McKenna R; Deitmer JW
    Proc Natl Acad Sci U S A; 2011 Feb; 108(7):3071-6. PubMed ID: 21282642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1.
    Becker HM; Deitmer JW
    J Biol Chem; 2008 Aug; 283(31):21655-67. PubMed ID: 18539591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II.
    Stridh MH; Alt MD; Wittmann S; Heidtmann H; Aggarwal M; Riederer B; Seidler U; Wennemuth G; McKenna R; Deitmer JW; Becker HM
    J Physiol; 2012 May; 590(10):2333-51. PubMed ID: 22451434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase.
    Schueler C; Becker HM; McKenna R; Deitmer JW
    PLoS One; 2011; 6(11):e27167. PubMed ID: 22076132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity.
    Nancolas B; Sessions RB; Halestrap AP
    Biochem J; 2015 Feb; 466(1):177-88. PubMed ID: 25437897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic suppression of the membrane conductance associated with the glutamine transporter SNAT3 expressed in Xenopus oocytes by carbonic anhydrase II.
    Weise A; Becker HM; Deitmer JW
    J Gen Physiol; 2007 Aug; 130(2):203-15. PubMed ID: 17664347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70).
    Wilson MC; Meredith D; Fox JE; Manoharan C; Davies AJ; Halestrap AP
    J Biol Chem; 2005 Jul; 280(29):27213-21. PubMed ID: 15917240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase.
    Becker HM; Hirnet D; Fecher-Trost C; Sültemeyer D; Deitmer JW
    J Biol Chem; 2005 Dec; 280(48):39882-9. PubMed ID: 16174776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4).
    Sasaki S; Kobayashi M; Futagi Y; Ogura J; Yamaguchi H; Takahashi N; Iseki K
    PLoS One; 2013; 8(7):e67690. PubMed ID: 23935841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function:
    Chatel B; Bendahan D; Hourdé C; Pellerin L; Lengacher S; Magistretti P; Le Fur Y; Vilmen C; Bernard M; Messonnier LA
    FASEB J; 2017 Jun; 31(6):2562-2575. PubMed ID: 28254758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein.
    Ovens MJ; Manoharan C; Wilson MC; Murray CM; Halestrap AP
    Biochem J; 2010 Oct; 431(2):217-25. PubMed ID: 20695846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells.
    Dimmer KS; Friedrich B; Lang F; Deitmer JW; Bröer S
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):219-27. PubMed ID: 10926847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of Histidine Residue His382 in pH Regulation of MCT4 Activity.
    Sasaki S; Kobayashi M; Futagi Y; Ogura J; Yamaguchi H; Iseki K
    PLoS One; 2014; 10(4):e0122738. PubMed ID: 25919709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.