These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 25562067)

  • 1. Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss.
    Hart CJ; Cuisinier M; Liang X; Kundu D; Garsuch A; Nazar LF
    Chem Commun (Camb); 2015 Feb; 51(12):2308-11. PubMed ID: 25562067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries.
    Pang Q; Kundu D; Cuisinier M; Nazar LF
    Nat Commun; 2014 Aug; 5():4759. PubMed ID: 25154399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries.
    Helen M; Reddy MA; Diemant T; Golla-Schindler U; Behm RJ; Kaiser U; Fichtner M
    Sci Rep; 2015 Jul; 5():12146. PubMed ID: 26173723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategic approach to recharging lithium-sulphur batteries for long cycle life.
    Su YS; Fu Y; Cochell T; Manthiram A
    Nat Commun; 2013; 4():2985. PubMed ID: 24346483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide.
    Wang Z; Dong Y; Li H; Zhao Z; Wu HB; Hao C; Liu S; Qiu J; Lou XW
    Nat Commun; 2014 Sep; 5():5002. PubMed ID: 25255431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs.
    Ji X; Evers S; Black R; Nazar LF
    Nat Commun; 2011; 2():325. PubMed ID: 21610728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.
    Chen H; Zou Q; Liang Z; Liu H; Li Q; Lu YC
    Nat Commun; 2015 Jan; 6():5877. PubMed ID: 25565112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
    Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y
    Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries.
    Xi K; Kidambi PR; Chen R; Gao C; Peng X; Ducati C; Hofmann S; Kumar RV
    Nanoscale; 2014 Jun; 6(11):5746-53. PubMed ID: 24658177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures.
    Huang C; Xiao J; Shao Y; Zheng J; Bennett WD; Lu D; Saraf LV; Engelhard M; Ji L; Zhang J; Li X; Graff GL; Liu J
    Nat Commun; 2014; 5():3015. PubMed ID: 24402522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries.
    Gu M; Belharouak I; Zheng J; Wu H; Xiao J; Genc A; Amine K; Thevuthasan S; Baer DR; Zhang JG; Browning ND; Liu J; Wang C
    ACS Nano; 2013 Jan; 7(1):760-7. PubMed ID: 23237664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling application of Li-MnO₂ batteries as rechargeable lithium-air batteries.
    Hu Y; Zhang T; Cheng F; Zhao Q; Han X; Chen J
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4338-43. PubMed ID: 25678148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-encapsulated hollow Fe₃O₄ nanoparticle aggregates as a high-performance anode material for lithium ion batteries.
    Chen D; Ji G; Ma Y; Lee JY; Lu J
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3078-83. PubMed ID: 21749101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection.
    Kim JG; Park MS; Hwang SM; Heo YU; Liao T; Sun Z; Park JH; Kim KJ; Jeong G; Kim YJ; Kim JH; Dou SX
    ChemSusChem; 2014 May; 7(5):1451-7. PubMed ID: 24700792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.