BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25562356)

  • 1. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells.
    Soukup D; Moise S; Céspedes E; Dobson J; Telling ND
    ACS Nano; 2015 Jan; 9(1):231-40. PubMed ID: 25562356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-dependent Brownian relaxation dynamics of a superparamagnetic clustered-particle suspension.
    Trisnanto SB; Kitamoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032306. PubMed ID: 25314445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incidence of the Brownian Relaxation Process on the Magnetic Properties of Ferrofluids.
    Vajtai L; Nemes NM; Morales MDP; Molnár K; Pinke BG; Simon F
    Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of medium viscosity and intracellular environment on the magnetization of superparamagnetic nanoparticles in silk fibroin solutions and 3T3 mouse fibroblast cell cultures.
    Urbano-Bojorge AL; Casanova-Carvajal O; Félix-González N; Fernández L; Madurga R; Sánchez-Cabezas S; Aznar E; Ramos M; Serrano-Olmedo JJ
    Nanotechnology; 2018 Sep; 29(38):385705. PubMed ID: 29947336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Mg(x)Mn(1-x)Fe(2)O(4) superparamagnetic nanoferrites for magnetic fluid hyperthermia applications.
    Jeun M; Park S; Jang GH; Lee KH
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16487-92. PubMed ID: 25238143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs.
    Di Corato R; Espinosa A; Lartigue L; Tharaud M; Chat S; Pellegrino T; Ménager C; Gazeau F; Wilhelm C
    Biomaterials; 2014 Aug; 35(24):6400-11. PubMed ID: 24816363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-Dependent Relaxation Properties of Monodisperse Magnetite Nanoparticles Measured Over Seven Decades of Frequency by AC Susceptometry.
    Ferguson RM; Khandhar AP; Jonasson C; Blomgren J; Johansson C; Krishnan KM
    IEEE Trans Magn; 2013 Jul; 49(7):3441-3444. PubMed ID: 25473124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells.
    Fortes Brollo ME; Hernández Flores P; Gutiérrez L; Johansson C; Barber DF; Morales MDP
    Phys Chem Chem Phys; 2018 Jul; 20(26):17829-17838. PubMed ID: 29923574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids.
    Jeun M; Kim YJ; Park KH; Paek SH; Bae S
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5719-25. PubMed ID: 23882824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.
    Tao C; Zhu Y
    Dalton Trans; 2014 Nov; 43(41):15482-90. PubMed ID: 25190592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical Magnetic Response of Iron Oxide Nanoparticles Inside Live Cells.
    Cabrera D; Coene A; Leliaert J; Artés-Ibáñez EJ; Dupré L; Telling ND; Teran FJ
    ACS Nano; 2018 Mar; 12(3):2741-2752. PubMed ID: 29508990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles.
    Larumbe S; Gómez-Polo C; Pérez-Landazábal JI; Pastor JM
    J Phys Condens Matter; 2012 Jul; 24(26):266007. PubMed ID: 22700683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery.
    Mohammad F; Yusof NA
    J Colloid Interface Sci; 2014 Nov; 434():89-97. PubMed ID: 25170601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles.
    Fortin JP; Gazeau F; Wilhelm C
    Eur Biophys J; 2008 Feb; 37(2):223-8. PubMed ID: 17641885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents.
    Vuong QL; Gossuin Y; Gillis P; Delangre S
    J Chem Phys; 2012 Sep; 137(11):114505. PubMed ID: 22998269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time magnetic nanothermometry: the use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields.
    Zhong J; Liu W; Jiang L; Yang M; Morais PC
    Rev Sci Instrum; 2014 Sep; 85(9):094905. PubMed ID: 25273762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.