These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25562399)

  • 1. Role of charge regulation and size polydispersity in nanoparticle encapsulation by viral coat proteins.
    Kusters R; Lin HK; Zandi R; Tsvetkova I; Dragnea B; van der Schoot P
    J Phys Chem B; 2015 Feb; 119(5):1869-80. PubMed ID: 25562399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of charge variation on the encapsulation of nanoparticles by virus coat proteins.
    Lin HK; van der Schoot P; Zandi R
    Phys Biol; 2012 Dec; 9(6):066004. PubMed ID: 23114290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of gold nanoparticles by simian virus 40 capsids.
    Wang T; Zhang Z; Gao D; Li F; Wei H; Liang X; Cui Z; Zhang XE
    Nanoscale; 2011 Oct; 3(10):4275-82. PubMed ID: 21879117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Cages as Containers for Gold Nanoparticles.
    Liu A; Verwegen M; de Ruiter MV; Maassen SJ; Traulsen CH; Cornelissen JJ
    J Phys Chem B; 2016 Jul; 120(26):6352-7. PubMed ID: 27135176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction.
    Komarov PV; Zherenkova LV; Khalatur PG
    J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theory for viral capsid assembly around electrostatic cores.
    Hagan MF
    J Chem Phys; 2009 Mar; 130(11):114902. PubMed ID: 19317561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoreactors via Encapsulation of Catalytic Gold Nanoparticles within Cowpea Chlorotic Mottle Virus Protein Cages.
    Liu A; de Ruiter MV; Maassen SJ; Cornelissen JJLM
    Methods Mol Biol; 2018; 1798():1-9. PubMed ID: 29868947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsidation of Different Plasmonic Gold Nanoparticles by the CCMV CP.
    Durán-Meza AL; Escamilla-Ruiz MI; Segovia-González XF; Villagrana-Escareño MV; Vega-Acosta JR; Ruiz-Garcia J
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32516956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The different faces of mass action in virus assembly.
    van der Holst B; Kegel WK; Zandi R; van der Schoot P
    J Biol Phys; 2018 Jun; 44(2):163-179. PubMed ID: 29616429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottom-up-assembled nanostar colloids of gold cores and tubes derived from tobacco mosaic virus.
    Eber FJ; Eiben S; Jeske H; Wege C
    Angew Chem Int Ed Engl; 2013 Jul; 52(28):7203-7. PubMed ID: 23828792
    [No Abstract]   [Full Text] [Related]  

  • 11. Tobacco Mosaic Virus capsid protein as targets for the self-assembly of gold nanoparticles.
    Zahr OK; Blum AS
    Methods Mol Biol; 2014; 1108():105-12. PubMed ID: 24243244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multishell structures of virus coat proteins.
    Prinsen P; van der Schoot P; Gelbart WM; Knobler CM
    J Phys Chem B; 2010 Apr; 114(16):5522-33. PubMed ID: 20369869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An examination of the electrostatic interactions between the N-terminal tail of the Brome Mosaic Virus coat protein and encapsidated RNAs.
    Ni P; Wang Z; Ma X; Das NC; Sokol P; Chiu W; Dragnea B; Hagan M; Kao CC
    J Mol Biol; 2012 Jun; 419(5):284-300. PubMed ID: 22472420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages.
    Daniel MC; Tsvetkova IB; Quinkert ZT; Murali A; De M; Rotello VM; Kao CC; Dragnea B
    ACS Nano; 2010 Jul; 4(7):3853-60. PubMed ID: 20575505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation.
    Li F; Li K; Cui ZQ; Zhang ZP; Wei HP; Gao D; Deng JY; Zhang XE
    Small; 2010 Oct; 6(20):2301-8. PubMed ID: 20842665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled integration of polymers into viral capsids.
    Comellas-Aragonès M; de la Escosura A; Dirks AT; van der Ham A; Fusté-Cuñé A; Cornelissen JJ; Nolte RJ
    Biomacromolecules; 2009 Nov; 10(11):3141-7. PubMed ID: 19839603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrostatic interactions in the assembly of empty spherical viral capsids.
    Siber A; Podgornik R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061906. PubMed ID: 18233868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of brome mosaic virus coat protein RNA-interacting domains.
    Calhoun SL; Rao AL
    Arch Virol; 2008; 153(2):231-45. PubMed ID: 18066637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses.
    Deng ZJ; Liang M; Toth I; Monteiro M; Minchin RF
    Nanotoxicology; 2013 May; 7(3):314-22. PubMed ID: 22394123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.