These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 25562406)
1. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Friebel D; Louie MW; Bajdich M; Sanwald KE; Cai Y; Wise AM; Cheng MJ; Sokaras D; Weng TC; Alonso-Mori R; Davis RC; Bargar JR; Nørskov JK; Nilsson A; Bell AT J Am Chem Soc; 2015 Jan; 137(3):1305-13. PubMed ID: 25562406 [TBL] [Abstract][Full Text] [Related]
2. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. Trotochaud L; Ranney JK; Williams KN; Boettcher SW J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896 [TBL] [Abstract][Full Text] [Related]
3. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Görlin M; Ferreira de Araújo J; Schmies H; Bernsmeier D; Dresp S; Gliech M; Jusys Z; Chernev P; Kraehnert R; Dau H; Strasser P J Am Chem Soc; 2017 Feb; 139(5):2070-2082. PubMed ID: 28080038 [TBL] [Abstract][Full Text] [Related]
4. Surface Interrogation Scanning Electrochemical Microscopy of Ni(1-x)Fe(x)OOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the "fast" Iron Sites. Ahn HS; Bard AJ J Am Chem Soc; 2016 Jan; 138(1):313-8. PubMed ID: 26645678 [TBL] [Abstract][Full Text] [Related]
5. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737 [TBL] [Abstract][Full Text] [Related]
6. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. Trześniewski BJ; Diaz-Morales O; Vermaas DA; Longo A; Bras W; Koper MT; Smith WA J Am Chem Soc; 2015 Dec; 137(48):15112-21. PubMed ID: 26544169 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte. Qiu Y; Xin L; Li W Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708 [TBL] [Abstract][Full Text] [Related]
8. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Trotochaud L; Young SL; Ranney JK; Boettcher SW J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732 [TBL] [Abstract][Full Text] [Related]
9. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Xiao H; Shin H; Goddard WA Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5872-5877. PubMed ID: 29784794 [TBL] [Abstract][Full Text] [Related]
10. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Burke MS; Kast MG; Trotochaud L; Smith AM; Boettcher SW J Am Chem Soc; 2015 Mar; 137(10):3638-48. PubMed ID: 25700234 [TBL] [Abstract][Full Text] [Related]
11. Optimized NiFe-Based Coordination Polymer Catalysts: Sulfur-Tuning and Operando Monitoring of Water Oxidation. Zhao Y; Wan W; Dongfang N; Triana CA; Douls L; Huang C; Erni R; Iannuzzi M; Patzke GR ACS Nano; 2022 Sep; 16(9):15318-15327. PubMed ID: 36069492 [TBL] [Abstract][Full Text] [Related]
12. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. Louie MW; Bell AT J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Activity of Co and Fe in Amorphous Cox-Fe-B Catalyst for Efficient Oxygen Evolution Reaction. Chen H; Ouyang S; Zhao M; Li Y; Ye J ACS Appl Mater Interfaces; 2017 Nov; 9(46):40333-40343. PubMed ID: 29111638 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface. Arai Y Environ Sci Technol; 2008 Feb; 42(4):1151-6. PubMed ID: 18351086 [TBL] [Abstract][Full Text] [Related]
15. Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy. Boubnov A; Carvalho HW; Doronkin DE; Günter T; Gallo E; Atkins AJ; Jacob CR; Grunwaldt JD J Am Chem Soc; 2014 Sep; 136(37):13006-15. PubMed ID: 25105343 [TBL] [Abstract][Full Text] [Related]
16. Interfacial Fe-O-Ni-O-Fe Bonding Regulates the Active Ni Sites of Ni-MOFs via Iron Doping and Decorating with FeOOH for Super-Efficient Oxygen Evolution. Li CF; Xie LJ; Zhao JW; Gu LF; Tang HB; Zheng L; Li GR Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202116934. PubMed ID: 35148567 [TBL] [Abstract][Full Text] [Related]
17. Flow cell for Jäker P; Aegerter D; Kyburz T; Städler R; Fonjallaz R; Detlefs B; Koziej D Open Res Eur; 2022; 2():74. PubMed ID: 37645301 [No Abstract] [Full Text] [Related]
18. Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks. Wannakao S; Maihom T; Kongpatpanich K; Limtrakul J; Promarak V Phys Chem Chem Phys; 2017 Nov; 19(43):29540-29548. PubMed ID: 29082388 [TBL] [Abstract][Full Text] [Related]
19. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. Liu Y; Ying Y; Fei L; Liu Y; Hu Q; Zhang G; Pang SY; Lu W; Mak CL; Luo X; Zhou L; Wei M; Huang H J Am Chem Soc; 2019 May; 141(20):8136-8145. PubMed ID: 31017412 [TBL] [Abstract][Full Text] [Related]
20. Formation of unexpectedly active Ni-Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxides. Görlin M; Chernev P; Paciok P; Tai CW; Ferreira de Araújo J; Reier T; Heggen M; Dunin-Borkowski R; Strasser P; Dau H Chem Commun (Camb); 2019 Jan; 55(6):818-821. PubMed ID: 30574958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]