These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25562526)

  • 1. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.
    Gurney KN; Humphries MD; Redgrave P
    PLoS Biol; 2015 Jan; 13(1):e1002034. PubMed ID: 25562526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal action-learning based on dopamine concentration.
    Morris G; Schmidt R; Bergman H
    Exp Brain Res; 2010 Jan; 200(3-4):307-17. PubMed ID: 19904530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing patterns of abnormal D1 and D2 receptor dependent cortico-striatal plasticity explain increased risk taking in patients with DYT1 dystonia.
    Gilbertson T; Arkadir D; Steele JD
    PLoS One; 2020; 15(5):e0226790. PubMed ID: 32365120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo.
    Fisher SD; Robertson PB; Black MJ; Redgrave P; Sagar MA; Abraham WC; Reynolds JNJ
    Nat Commun; 2017 Aug; 8(1):334. PubMed ID: 28839128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.
    Badre D; Frank MJ
    Cereb Cortex; 2012 Mar; 22(3):527-36. PubMed ID: 21693491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.
    Morita K; Kato A
    Front Neural Circuits; 2014; 8():36. PubMed ID: 24782717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine.
    Morita K; Kawaguchi Y
    Front Neural Circuits; 2018; 12():111. PubMed ID: 30687019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling functions of striatal dopamine modulation in learning and planning.
    Suri RE; Bargas J; Arbib MA
    Neuroscience; 2001; 103(1):65-85. PubMed ID: 11311788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maladaptive striatal plasticity and abnormal reward-learning in cervical dystonia.
    Gilbertson T; Humphries M; Steele JD
    Eur J Neurosci; 2019 Oct; 50(7):3191-3204. PubMed ID: 30955204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging the gap between striatal plasticity and learning.
    Perrin E; Venance L
    Curr Opin Neurobiol; 2019 Feb; 54():104-112. PubMed ID: 30321866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.
    Morita K; Jitsev J; Morrison A
    Behav Brain Res; 2016 Sep; 311():110-121. PubMed ID: 27173430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-timing dependent plasticity in striatal interneurons.
    Fino E; Venance L
    Neuropharmacology; 2011 Apr; 60(5):780-8. PubMed ID: 21262240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional logic of corticostriatal connections.
    Shipp S
    Brain Struct Funct; 2017 Mar; 222(2):669-706. PubMed ID: 27412682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.
    Doll BB; Bath KG; Daw ND; Frank MJ
    J Neurosci; 2016 Jan; 36(4):1211-22. PubMed ID: 26818509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered function of glutamatergic cortico-striatal synapses causes output pathway abnormalities in a chronic model of parkinsonism.
    Warre R; Thiele S; Talwar S; Kamal M; Johnston TH; Wang S; Lam D; Lo C; Khademullah CS; Perera G; Reyes G; Sun XS; Brotchie JM; Nash JE
    Neurobiol Dis; 2011 Mar; 41(3):591-604. PubMed ID: 20971190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control.
    Bullock D; Tan CO; John YJ
    Neural Netw; 2009; 22(5-6):757-65. PubMed ID: 19592218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.