These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25562593)
1. Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent. Luo W; Bommier C; Jian Z; Li X; Carter R; Vail S; Lu Y; Lee JJ; Ji X ACS Appl Mater Interfaces; 2015 Feb; 7(4):2626-31. PubMed ID: 25562593 [TBL] [Abstract][Full Text] [Related]
2. Na-Ion Battery Anodes: Materials and Electrochemistry. Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764 [TBL] [Abstract][Full Text] [Related]
3. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery. Zhang H; Ming H; Zhang W; Cao G; Yang Y ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143 [TBL] [Abstract][Full Text] [Related]
4. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. Bai Y; Wang Z; Wu C; Xu R; Wu F; Liu Y; Li H; Li Y; Lu J; Amine K ACS Appl Mater Interfaces; 2015 Mar; 7(9):5598-604. PubMed ID: 25692826 [TBL] [Abstract][Full Text] [Related]
5. Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. Shen F; Zhu H; Luo W; Wan J; Zhou L; Dai J; Zhao B; Han X; Fu K; Hu L ACS Appl Mater Interfaces; 2015 Oct; 7(41):23291-6. PubMed ID: 26437023 [TBL] [Abstract][Full Text] [Related]
6. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries. Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008 [TBL] [Abstract][Full Text] [Related]
7. High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. Liu X; Jiang X; Zeng Z; Ai X; Yang H; Zhong F; Xia Y; Cao Y ACS Appl Mater Interfaces; 2018 Nov; 10(44):38141-38150. PubMed ID: 30335351 [TBL] [Abstract][Full Text] [Related]
8. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Yu ZE; Lyu Y; Wang Y; Xu S; Cheng H; Mu X; Chu J; Chen R; Liu Y; Guo B Chem Commun (Camb); 2020 Jan; 56(5):778-781. PubMed ID: 31845678 [TBL] [Abstract][Full Text] [Related]
9. Boron-doped graphene as a promising anode for Na-ion batteries. Ling C; Mizuno F Phys Chem Chem Phys; 2014 Jun; 16(22):10419-24. PubMed ID: 24760182 [TBL] [Abstract][Full Text] [Related]
11. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Bhuvaneswari S; Pratheeksha PM; Anandan S; Rangappa D; Gopalan R; Rao TN Phys Chem Chem Phys; 2014 Mar; 16(11):5284-94. PubMed ID: 24496151 [TBL] [Abstract][Full Text] [Related]
12. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries. Li Y; Xia D; Tao L; Xu Z; Yu D; Jin Q; Lin F; Huang H ACS Appl Mater Interfaces; 2024 Jun; 16(22):28461-28472. PubMed ID: 38780280 [TBL] [Abstract][Full Text] [Related]
14. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396 [TBL] [Abstract][Full Text] [Related]
15. Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage. Yang L; Hu M; Zhang H; Yang W; Lv R J Colloid Interface Sci; 2020 Apr; 566():257-264. PubMed ID: 32007737 [TBL] [Abstract][Full Text] [Related]
16. Flexible P-Doped Carbon Cloth: Vacuum-Sealed Preparation and Enhanced Na-Storage Properties as Binder-Free Anode for Sodium Ion Batteries. Lü HY; Zhang XH; Wan F; Liu DS; Fan CY; Xu HM; Wang G; Wu XL ACS Appl Mater Interfaces; 2017 Apr; 9(14):12518-12527. PubMed ID: 28345854 [TBL] [Abstract][Full Text] [Related]
17. Expanding Interlayer Spacing of Hard Carbon by Natural K Wu F; Liu L; Yuan Y; Li Y; Bai Y; Li T; Lu J; Wu C ACS Appl Mater Interfaces; 2018 Aug; 10(32):27030-27038. PubMed ID: 30020762 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. Ning G; Ma X; Zhu X; Cao Y; Sun Y; Qi C; Fan Z; Li Y; Zhang X; Lan X; Gao J ACS Appl Mater Interfaces; 2014 Sep; 6(18):15950-8. PubMed ID: 25188430 [TBL] [Abstract][Full Text] [Related]
19. Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery. Jia H; Dirican M; Aksu C; Sun N; Chen C; Zhu J; Zhu P; Yan C; Li Y; Ge Y; Guo J; Zhang X J Colloid Interface Sci; 2019 Feb; 536():655-663. PubMed ID: 30396121 [TBL] [Abstract][Full Text] [Related]
20. Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries. Ma R; Fan L; Chen S; Wei Z; Yang Y; Yang H; Qin Y; Lu B ACS Appl Mater Interfaces; 2018 May; 10(18):15751-15759. PubMed ID: 29664614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]