These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25562593)
21. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. Zhang J; Yin YX; Guo YG ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232 [TBL] [Abstract][Full Text] [Related]
22. Do we need covalent bonding of Si nanoparticles on graphene oxide for Li-ion batteries? Miroshnikov Y; Grinbom G; Gershinsky G; Nessim GD; Zitoun D Faraday Discuss; 2014; 173():391-402. PubMed ID: 25467631 [TBL] [Abstract][Full Text] [Related]
23. An ultrastable anode for long-life room-temperature sodium-ion batteries. Yu H; Ren Y; Xiao D; Guo S; Zhu Y; Qian Y; Gu L; Zhou H Angew Chem Int Ed Engl; 2014 Aug; 53(34):8963-9. PubMed ID: 24962822 [TBL] [Abstract][Full Text] [Related]
24. Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. Liu Z; Wang J; Jia X; Li W; Zhang Q; Fan L; Ding H; Yang H; Yu X; Li X; Lu B ACS Nano; 2019 Sep; 13(9):10631-10642. PubMed ID: 31491083 [TBL] [Abstract][Full Text] [Related]
25. Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Zheng P; Liu T; Guo S Sci Rep; 2016 Oct; 6():35620. PubMed ID: 27752146 [TBL] [Abstract][Full Text] [Related]
26. Liquid Template Assisted Activation for "Egg Puff"-Like Hard Carbon toward High Sodium Storage Performance. Guo M; Zhang H; Huang Z; Li W; Zhang D; Gao C; Gao F; He P; Wang J; Chen W; Chen X; Terrones M; Wang Y Small; 2023 Sep; 19(39):e2302583. PubMed ID: 37236201 [TBL] [Abstract][Full Text] [Related]
27. Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. Liu M; Zhang J; Guo S; Wang B; Shen Y; Ai X; Yang H; Qian J ACS Appl Mater Interfaces; 2020 Apr; 12(15):17620-17627. PubMed ID: 32208636 [TBL] [Abstract][Full Text] [Related]
28. High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. Zhang F; Yao Y; Wan J; Henderson D; Zhang X; Hu L ACS Appl Mater Interfaces; 2017 Jan; 9(1):391-397. PubMed ID: 28034316 [TBL] [Abstract][Full Text] [Related]
29. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422 [TBL] [Abstract][Full Text] [Related]
30. Slope-Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na-Ion Batteries. Qi Y; Lu Y; Ding F; Zhang Q; Li H; Huang X; Chen L; Hu YS Angew Chem Int Ed Engl; 2019 Mar; 58(13):4361-4365. PubMed ID: 30710402 [TBL] [Abstract][Full Text] [Related]
31. Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. Lu H; Ai F; Jia Y; Tang C; Zhang X; Huang Y; Yang H; Cao Y Small; 2018 Sep; 14(39):e1802694. PubMed ID: 30175558 [TBL] [Abstract][Full Text] [Related]
32. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Lu Z; Geng C; Yang H; He P; Wu S; Yang QH; Zhou H Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2210203119. PubMed ID: 36161916 [TBL] [Abstract][Full Text] [Related]
33. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries. Liu ZG; Zhao J; Yao H; He XX; Zhang H; Qiao Y; Wu XQ; Li L; Chou SL Chem Sci; 2024 Jun; 15(22):8478-8487. PubMed ID: 38846387 [TBL] [Abstract][Full Text] [Related]
34. Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries. Park AR; Kim JS; Kim KS; Zhang K; Park J; Park JH; Lee JK; Yoo PJ ACS Appl Mater Interfaces; 2014 Feb; 6(3):1702-8. PubMed ID: 24443772 [TBL] [Abstract][Full Text] [Related]
35. A General Multi-Interface Strategy toward Densified Carbon Materials with Enhanced Comprehensive Electrochemical Performance for Li/Na-Ion Batteries. Yuan M; Meng C; Li A; Cao B; Dong Y; Wang D; Liu X; Chen X; Song H Small; 2022 Apr; 18(16):e2105738. PubMed ID: 35253978 [TBL] [Abstract][Full Text] [Related]
36. High-performance sodium-ion batteries with a hard carbon anode: transition from the half-cell to full-cell perspective. Chen X; Zheng Y; Liu W; Zhang C; Li S; Li J Nanoscale; 2019 Nov; 11(46):22196-22205. PubMed ID: 31742294 [TBL] [Abstract][Full Text] [Related]
38. Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Lin C; Fan X; Xin Y; Cheng F; Lai MO; Zhou H; Lu L Nanoscale; 2014 Jun; 6(12):6651-60. PubMed ID: 24816782 [TBL] [Abstract][Full Text] [Related]
39. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
40. Realizing Improved Sodium-Ion Storage by Introducing Carbonyl Groups and Closed Micropores into a Biomass-Derived Hard Carbon Anode. Deng W; Cao Y; Yuan G; Liu G; Zhang X; Xia Y ACS Appl Mater Interfaces; 2021 Oct; 13(40):47728-47739. PubMed ID: 34585568 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]