These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25562593)
41. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. Wu F; Zhang M; Bai Y; Wang X; Dong R; Wu C ACS Appl Mater Interfaces; 2019 Apr; 11(13):12554-12561. PubMed ID: 30875192 [TBL] [Abstract][Full Text] [Related]
42. Carbon with Expanded and Well-Developed Graphene Planes Derived Directly from Condensed Lignin as a High-Performance Anode for Sodium-Ion Batteries. Yoon D; Hwang J; Chang W; Kim J ACS Appl Mater Interfaces; 2018 Jan; 10(1):569-581. PubMed ID: 29219295 [TBL] [Abstract][Full Text] [Related]
43. Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. Datta D; Li J; Shenoy VB ACS Appl Mater Interfaces; 2014 Feb; 6(3):1788-95. PubMed ID: 24417606 [TBL] [Abstract][Full Text] [Related]
44. Achieving Slope-Reigned Na-Ion Storage in Carbon Nanofibers by Constructing Defect-Rich Texture by a Cu-Activation Strategy. Guo X; Xue Y; Zhou H; Weng Y; Zhou J ACS Appl Mater Interfaces; 2020 Jan; 12(2):2407-2416. PubMed ID: 31851485 [TBL] [Abstract][Full Text] [Related]
45. Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries. Wang K; Jin Y; Sun S; Huang Y; Peng J; Luo J; Zhang Q; Qiu Y; Fang C; Han J ACS Omega; 2017 Apr; 2(4):1687-1695. PubMed ID: 31457533 [TBL] [Abstract][Full Text] [Related]
46. Molecular Cooperative Assembly-Mediated Synthesis of Ultra-High-Performance Hard Carbon Anodes for Dual-Carbon Sodium Hybrid Capacitors. Kang HJ; Huh YS; Im WB; Jun YS ACS Nano; 2019 Oct; 13(10):11935-11946. PubMed ID: 31577414 [TBL] [Abstract][Full Text] [Related]
47. Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries. He XX; Zhao JH; Lai WH; Li R; Yang Z; Xu CM; Dai Y; Gao Y; Liu XH; Li L; Xu G; Qiao Y; Chou SL; Wu M ACS Appl Mater Interfaces; 2021 Sep; 13(37):44358-44368. PubMed ID: 34506123 [TBL] [Abstract][Full Text] [Related]
48. Exfoliated-SnS₂ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Liu Y; Kang H; Jiao L; Chen C; Cao K; Wang Y; Yuan H Nanoscale; 2015 Jan; 7(4):1325-32. PubMed ID: 25367597 [TBL] [Abstract][Full Text] [Related]
49. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898 [TBL] [Abstract][Full Text] [Related]
50. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017 [TBL] [Abstract][Full Text] [Related]
51. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155 [TBL] [Abstract][Full Text] [Related]
52. Nano Hard Carbon Anodes for Sodium-Ion Batteries. Kim DY; Kim DH; Kim SH; Lee EK; Park SK; Lee JW; Yun YS; Choi SY; Kang J Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31126100 [TBL] [Abstract][Full Text] [Related]
53. Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. Kim C; Ko M; Yoo S; Chae S; Choi S; Lee EH; Ko S; Lee SY; Cho J; Park S Nanoscale; 2014 Sep; 6(18):10604-10. PubMed ID: 25079611 [TBL] [Abstract][Full Text] [Related]
54. Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. Wang H; Mao N; Shi J; Wang Q; Yu W; Wang X ACS Appl Mater Interfaces; 2015 Feb; 7(4):2882-90. PubMed ID: 25571930 [TBL] [Abstract][Full Text] [Related]
55. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries. Liang Z; Fan X; Zheng W; Singh DJ ACS Appl Mater Interfaces; 2017 May; 9(20):17076-17084. PubMed ID: 28474877 [TBL] [Abstract][Full Text] [Related]
56. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors. Huang X; Sun B; Chen S; Wang G Chem Asian J; 2014 Jan; 9(1):206-11. PubMed ID: 24129981 [TBL] [Abstract][Full Text] [Related]
57. Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries. Xu Y; Guo D; Luo Y; Xu J; Guo K; Wang W; Liu G; Wu N; Liu X; Qin A Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063698 [TBL] [Abstract][Full Text] [Related]
58. Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. Lin N; Zhou J; Wang L; Zhu Y; Qian Y ACS Appl Mater Interfaces; 2015 Jan; 7(1):409-14. PubMed ID: 25494648 [TBL] [Abstract][Full Text] [Related]
59. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu S; Wang R; Wang Z; Lin Z Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278 [TBL] [Abstract][Full Text] [Related]
60. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]