BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25562687)

  • 1. Electron collection in host-guest nanostructured hematite photoanodes for water splitting: the influence of scaffold doping density.
    Kondofersky I; Dunn HK; Müller A; Mandlmeier B; Feckl JM; Fattakhova-Rohlfing D; Scheu C; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4623-30. PubMed ID: 25562687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P
    ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry.
    Stefik M; Cornuz M; Mathews N; Hisatomi T; Mhaisalkar S; Grätzel M
    Nano Lett; 2012 Oct; 12(10):5431-5. PubMed ID: 22974097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host/Guest Nanostructured Photoanodes Integrated with Targeted Enhancement Strategies for Photoelectrochemical Water Splitting.
    Wang Z; Zhu H; Tu W; Zhu X; Yao Y; Zhou Y; Zou Z
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103744. PubMed ID: 34738739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-free synthesis of hematite photoanodes with nanostructured ATO conductive underlayer for PEC water splitting.
    Wang D; Zhang Y; Wang J; Peng C; Huang Q; Su S; Wang L; Huang W; Fan C
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):36-40. PubMed ID: 24328303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode.
    Moir J; Soheilnia N; O'Brien P; Jelle A; Grozea CM; Faulkner D; Helander MG; Ozin GA
    ACS Nano; 2013 May; 7(5):4261-74. PubMed ID: 23581965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.
    Hisatomi T; Brillet J; Cornuz M; Le Formal F; Tétreault N; Sivula K; Grätzel M
    Faraday Discuss; 2012; 155():223-32; discussion 297-308. PubMed ID: 22470976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.
    Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T
    Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the electron collection efficiency in porous hematite using a thin iron oxide underlayer: towards efficient all-iron based photoelectrodes.
    Dalle Carbonare N; Carli S; Argazzi R; Orlandi M; Bazzanella N; Miotello A; Caramori S; Bignozzi CA
    Phys Chem Chem Phys; 2015 Nov; 17(44):29661-70. PubMed ID: 26477966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimony-Doped Tin Oxide for Photoelectrochemical Water Splitting.
    Wang XD; Xu YF; Chen BX; Zhou N; Chen HY; Kuang DB; Su CY
    ChemSusChem; 2016 Oct; 9(20):3012-3018. PubMed ID: 27704701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite Indium Tin Oxide Nanofibers with Embedded Hematite Nanoparticles for Photoelectrochemical Water Splitting.
    Elishav O; Stone D; Tsyganok A; Jayanthi S; Ellis DS; Yeshurun T; Maor II; Levi A; Beilin V; Shter GE; Yerushalmi R; Rothschild A; Banin U; Grader GS
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41851-41860. PubMed ID: 36094823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding charge transport in non-doped pristine and surface passivated hematite (Fe
    Bassi PS; Xianglin L; Fang Y; Loo JS; Barber J; Wong LH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30370-30378. PubMed ID: 27782252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.