BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25562741)

  • 1. Contact lens biofuel cell tested in a synthetic tear solution.
    Reid RC; Minteer SD; Gale BK
    Biosens Bioelectron; 2015 Jun; 68():142-148. PubMed ID: 25562741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature biofuel cell as a potential power source for glucose-sensing contact lenses.
    Falk M; Andoralov V; Silow M; Toscano MD; Shleev S
    Anal Chem; 2013 Jul; 85(13):6342-8. PubMed ID: 23735164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporous Gold-Based Biofuel Cells on Contact Lenses.
    Xiao X; Siepenkoetter T; Conghaile PÓ; Leech D; Magner E
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7107-7116. PubMed ID: 29406691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.
    MacVittie K; Conlon T; Katz E
    Bioelectrochemistry; 2015 Dec; 106(Pt A):28-33. PubMed ID: 25467135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers.
    Bobrowski T; González Arribas E; Ludwig R; Toscano MD; Shleev S; Schuhmann W
    Biosens Bioelectron; 2018 Mar; 101():84-89. PubMed ID: 29049946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a membraneless glucose/oxygen enzymatic fuel cell based on a bioanode with high coulombic efficiency and current density.
    Shao M; Zafar MN; Falk M; Ludwig R; Sygmund C; Peterbauer CK; Guschin DA; MacAodha D; Ó Conghaile P; Leech D; Toscano MD; Shleev S; Schuhmann W; Gorton L
    Chemphyschem; 2013 Jul; 14(10):2260-9. PubMed ID: 23568439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system--battery not included.
    Southcott M; MacVittie K; Halámek J; Halámková L; Jemison WD; Lobel R; Katz E
    Phys Chem Chem Phys; 2013 May; 15(17):6278-83. PubMed ID: 23519144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O
    Giroud F; Sawada K; Taya M; Cosnier S
    Biosens Bioelectron; 2017 Jan; 87():957-963. PubMed ID: 27665518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofuel cell as a power source for electronic contact lenses.
    Falk M; Andoralov V; Blum Z; Sotres J; Suyatin DB; Ruzgas T; Arnebrant T; Shleev S
    Biosens Bioelectron; 2012; 37(1):38-45. PubMed ID: 22621980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of ethanol-oxygen biofuel cell output using a CNT based nano-composite as bioanode.
    Gouranlou F; Ghourchian H
    Biosens Bioelectron; 2016 Apr; 78():337-343. PubMed ID: 26649491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic fuel cells: integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design.
    Rincón RA; Lau C; Luckarift HR; Garcia KE; Adkins E; Johnson GR; Atanassov P
    Biosens Bioelectron; 2011 Sep; 27(1):132-6. PubMed ID: 21775124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.
    Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F
    Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.
    Kulkarni T; Slaughter G
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():5-8. PubMed ID: 29059797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofuel cell backpacked insect and its application to wireless sensing.
    Shoji K; Akiyama Y; Suzuki M; Nakamura N; Ohno H; Morishima K
    Biosens Bioelectron; 2016 Apr; 78():390-395. PubMed ID: 26655178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A disposable enzymatic biofuel cell for glucose sensing via short-circuit current.
    Morshed J; Hossain MM; Zebda A; Tsujimura S
    Biosens Bioelectron; 2023 Jun; 230():115272. PubMed ID: 37023550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic biofuel cell based on anode and cathode powered by ethanol.
    Ramanavicius A; Kausaite A; Ramanaviciene A
    Biosens Bioelectron; 2008 Dec; 24(4):767-72. PubMed ID: 18693008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells.
    Katz E; Lioubashevski O; Willner I
    J Am Chem Soc; 2005 Mar; 127(11):3979-88. PubMed ID: 15771535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-powered glucose biosensing system.
    Slaughter G; Kulkarni T
    Biosens Bioelectron; 2016 Apr; 78():45-50. PubMed ID: 26594885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.