These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

946 related articles for article (PubMed ID: 25562829)

  • 1. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.
    Zhang W; Li R; Deng H; Wang L; Lin W; Ji S; Shen D
    Neuroimage; 2015 Mar; 108():214-24. PubMed ID: 25562829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION.
    Nie D; Wang L; Gao Y; Shen D
    Proc IEEE Int Symp Biomed Imaging; 2016; 2016():1342-1345. PubMed ID: 27668065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.
    Wang L; Gao Y; Shi F; Li G; Gilmore JH; Lin W; Shen D
    Neuroimage; 2015 Mar; 108():160-72. PubMed ID: 25541188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-MASNet: 3D mixed-scale asymmetric convolutional segmentation network for 6-month-old infant brain MR images.
    Zeng Z; Zhao T; Sun L; Zhang Y; Xia M; Liao X; Zhang J; Shen D; Wang L; He Y
    Hum Brain Mapp; 2023 Mar; 44(4):1779-1792. PubMed ID: 36515219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation.
    Nie D; Wang L; Adeli E; Lao C; Lin W; Shen D
    IEEE Trans Cybern; 2019 Mar; 49(3):1123-1136. PubMed ID: 29994385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age.
    Taso M; Le Troter A; Sdika M; Cohen-Adad J; Arnoux PJ; Guye M; Ranjeva JP; Callot V
    Neuroimage; 2015 Aug; 117():20-8. PubMed ID: 26003856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel hybrid atlas-free hierarchical graph-based segmentation of newborn brain MRI using wavelet filter banks.
    Jaware T; Khanchandani K; Badgujar R
    Int J Neurosci; 2020 May; 130(5):499-514. PubMed ID: 31790318
    [No Abstract]   [Full Text] [Related]  

  • 10. Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation.
    Wang L; Shi F; Gao Y; Li G; Gilmore JH; Lin W; Shen D
    Neuroimage; 2014 Apr; 89():152-64. PubMed ID: 24291615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.
    Moeskops P; Viergever MA; Mendrik AM; de Vries LS; Benders MJ; Isgum I
    IEEE Trans Med Imaging; 2016 May; 35(5):1252-1261. PubMed ID: 27046893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D cerebral MR image segmentation using multiple-classifier system.
    Amiri S; Movahedi MM; Kazemi K; Parsaei H
    Med Biol Eng Comput; 2017 Mar; 55(3):353-364. PubMed ID: 27207464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation.
    Dolz J; Desrosiers C; Wang L; Yuan J; Shen D; Ben Ayed I
    Comput Med Imaging Graph; 2020 Jan; 79():101660. PubMed ID: 31785402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D multi-modality tissue segmentation of serial infant images.
    Wang L; Shi F; Yap PT; Gilmore JH; Lin W; Shen D
    PLoS One; 2012; 7(9):e44596. PubMed ID: 23049751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Label-fusion-aided Convolutional Neural Network for Isointense Infant Brain Tissue Segmentation.
    Li T; Zhou F; Zhu Z; Shu H; Zhu H
    Proc IEEE Int Symp Biomed Imaging; 2018 Apr; 2018():692-695. PubMed ID: 30555624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of sparse multi-modality representation and geometrical constraint for isointense infant brain segmentation.
    Wang L; Shi F; Li G; Lin W; Gilmore JH; Shen D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):703-10. PubMed ID: 24505729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of MR brain images of preterm infants using supervised classification.
    Moeskops P; Benders MJ; Chiţ SM; Kersbergen KJ; Groenendaal F; de Vries LS; Viergever MA; Išgum I
    Neuroimage; 2015 Sep; 118():628-41. PubMed ID: 26057591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.