These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25563258)

  • 1. Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast.
    Ogunlade O; Beard P
    Med Phys; 2015 Jan; 42(1):170-80. PubMed ID: 25563258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: an experimental study of the effects of microbubbles on simple thermoacoustic targets.
    Mashal A; Booske JH; Hagness SC
    Phys Med Biol; 2009 Feb; 54(3):641-50. PubMed ID: 19124946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of contrast enhancement by carbon nanotubes for microwave-induced thermoacoustic tomography.
    Song J; Zhao Z; Wang J; Zhu X; Wu J; Nie Z; Liu QH
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):930-8. PubMed ID: 25438298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice.
    Ding W; Lou C; Qiu J; Zhao Z; Zhou Q; Liang M; Ji Z; Yang S; Xing D
    Nanomedicine; 2016 Jan; 12(1):235-44. PubMed ID: 26393884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection.
    Nie L; Ou Z; Yang S; Xing D
    Med Phys; 2010 Aug; 37(8):4193-200. PubMed ID: 20879580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent.
    Pramanik M; Swierczewska M; Green D; Sitharaman B; Wang LV
    J Biomed Opt; 2009; 14(3):034018. PubMed ID: 19566311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast cancer diagnosis with a microwave thermoacoustic imaging technique-a numerical approach.
    Soltani M; Rahpeima R; Kashkooli FM
    Med Biol Eng Comput; 2019 Jul; 57(7):1497-1513. PubMed ID: 30919269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography.
    Nie L; Xing D; Yang S
    Med Phys; 2009 Aug; 36(8):3429-37. PubMed ID: 19746776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements.
    Cuenca JA; Bugler K; Taylor S; Morgan D; Williams P; Bauer J; Porch A
    J Phys Condens Matter; 2016 Mar; 28(10):106002. PubMed ID: 26882084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting dielectric spectroscopic properties from microwave-induced thermoacoustic signals.
    Shiyu Liu ; Hao Nan ; Dolatsha N; Arbabian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3618-3621. PubMed ID: 28269078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiofrequency interaction with conductive colloids: permittivity and electrical conductivity of single-wall carbon nanotubes in saline.
    Gach HM; Nair T
    Bioelectromagnetics; 2010 Dec; 31(8):582-8. PubMed ID: 20607730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative microwave-induced thermoacoustic tomography.
    Yao L; Guo G; Jiang H
    Med Phys; 2010 Jul; 37(7):3752-9. PubMed ID: 20831083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinically relevant CNT dispersions with exceptionally high dielectric properties for microwave theranostic applications.
    Xie SX; Gao F; Patel SC; Booske JH; Hagness SC; Sitharaman B
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2718-23. PubMed ID: 24876108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging.
    Patch SK; Hull D; See WA; Hanson GW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):245-55. PubMed ID: 26731749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture.
    Feng D; Xu Y; Ku G; Wang LV
    Med Phys; 2001 Dec; 28(12):2427-31. PubMed ID: 11797945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.
    Wen L; Ding W; Yang S; Xing D
    Biomaterials; 2016 Jan; 75():163-173. PubMed ID: 26513410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF testbed for thermoacoustic tomography.
    Fallon D; Yan L; Hanson GW; Patch SK
    Rev Sci Instrum; 2009 Jun; 80(6):064301. PubMed ID: 19566215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotechnology and MRI contrast enhancement.
    Matson ML; Wilson LJ
    Future Med Chem; 2010 Mar; 2(3):491-502. PubMed ID: 21426177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials.
    Mashal A; Sitharaman B; Li X; Avti PK; Sahakian AV; Booske JH; Hagness SC
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1831-4. PubMed ID: 20176534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast.
    Ku G; Wang LV
    Med Phys; 2001 Jan; 28(1):4-10. PubMed ID: 11213921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.