BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 25563259)

  • 41. Detection of masses in digital breast tomosynthesis using complementary information of simulated projection.
    Kim ST; Kim DH; Ro YM
    Med Phys; 2015 Dec; 42(12):7043-58. PubMed ID: 26632059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis.
    Wei J; Chan HP; Hadjiiski LM; Helvie MA; Lu Y; Zhou C; Samala R
    Med Phys; 2014 Apr; 41(4):041913. PubMed ID: 24694144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance of Photon-Counting Breast Computed Tomography, Digital Mammography, and Digital Breast Tomosynthesis in Evaluating Breast Specimens.
    Rößler AC; Kalender W; Kolditz D; Steiding C; Ruth V; Preuss C; Peter SC; Brehm B; Hammon M; Schulz-Wendtland R; Wenkel E
    Acad Radiol; 2017 Feb; 24(2):184-190. PubMed ID: 27888024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of a constrained paired-view technique in iterative reconstruction for breast tomosynthesis.
    Wu G; Mainprize JG; Yaffe MJ
    Med Phys; 2013 Oct; 40(10):101901. PubMed ID: 24089903
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Case for Wide-Angle Breast Tomosynthesis.
    Samei E; Thompson J; Richard S; Bowsher J
    Acad Radiol; 2015 Jul; 22(7):860-9. PubMed ID: 25920335
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction.
    Lu Y; Chan HP; Wei J; Hadjiiski LM
    Phys Med Biol; 2013 Feb; 58(3):569-87. PubMed ID: 23318346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved digital breast tomosynthesis images using automated ultrasound.
    Zhang X; Yuan J; Du S; Kripfgans OD; Wang X; Carson PL; Liu X
    Med Phys; 2014 Jun; 41(6):061911. PubMed ID: 24877822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How does c-view image quality compare with conventional 2D FFDM?
    Nelson JS; Wells JR; Baker JA; Samei E
    Med Phys; 2016 May; 43(5):2538. PubMed ID: 27147364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Digital breast tomosynthesis image reconstruction using 2D and 3D total variation minimization.
    Ertas M; Yildirim I; Kamasak M; Akan A
    Biomed Eng Online; 2013 Oct; 12():112. PubMed ID: 24172584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Model observer for assessing digital breast tomosynthesis for multi-lesion detection in the presence of anatomical noise.
    Wen G; Markey MK; Haygood TM; Park S
    Phys Med Biol; 2018 Feb; 63(4):045017. PubMed ID: 29376838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.
    Marques T; Ribeiro A; Di Maria S; Belchior A; Cardoso J; Matela N; Oliveira N; Janeiro L; Almeida P; Vaz P
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):337-41. PubMed ID: 25836692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel approach to digital breast tomosynthesis for simultaneous acquisition of 2D and 3D images.
    Vecchio S; Albanese A; Vignoli P; Taibi A
    Eur Radiol; 2011 Jun; 21(6):1207-13. PubMed ID: 21193910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms.
    Sidky EY; Pan X; Reiser IS; Nishikawa RM; Moore RH; Kopans DB
    Med Phys; 2009 Nov; 36(11):4920-32. PubMed ID: 19994501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigating simulation-based metrics for characterizing linear iterative reconstruction in digital breast tomosynthesis.
    Rose SD; Sanchez AA; Sidky EY; Pan X
    Med Phys; 2017 Sep; 44(9):e279-e296. PubMed ID: 28901614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Comparison of full-field digital mammography and digital breast tomosynthesis on assessment of the lesions in dense breast: a preliminary study].
    Li Y; Ye ZX; Wu T; An YH; Liu PF; Bao RX
    Zhonghua Zhong Liu Za Zhi; 2013 Jan; 35(1):33-7. PubMed ID: 23648297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variation in digital breast tomosynthesis image quality at differing heights above the detector.
    Davidson R; Al Khalifah K; Zhou A
    J Med Radiat Sci; 2022 Jun; 69(2):174-181. PubMed ID: 34957671
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Key technologies in digital breast tomosynthesis system:theory, design, and optimization].
    Li M; Ma K; Tao X; Wang Y; He J; Wei Z; Chen G; Li S; Zeng D; Bian Z; Wu G; Liao S; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Feb; 39(2):192-200. PubMed ID: 30890508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.