These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25563268)

  • 21. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.
    Zhang L; Zeng L; Guo Y
    J Xray Sci Technol; 2018; 26(3):481-498. PubMed ID: 29562578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Update on Multienergy CT: Physics, Principles, and Applications.
    Rajiah P; Parakh A; Kay F; Baruah D; Kambadakone AR; Leng S
    Radiographics; 2020; 40(5):1284-1308. PubMed ID: 32822281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.
    Liu Y; Shangguan H; Zhang Q; Zhu H; Shu H; Gui Z
    Comput Biol Med; 2015 May; 60():117-31. PubMed ID: 25817533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-Energy Computed Tomography for the Characterization of Intracranial Hemorrhage and Calcification: A Systematic Approach in a Phantom System.
    Nute JL; Jacobsen MC; Chandler A; Cody DD; Schellingerhout D
    Invest Radiol; 2017 Jan; 52(1):30-41. PubMed ID: 27379697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.
    Schöndube H; Allmendinger T; Stierstorfer K; Bruder H; Flohr T
    Med Phys; 2013 Mar; 40(3):031112. PubMed ID: 23464292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alpha image reconstruction (AIR): a new iterative CT image reconstruction approach using voxel-wise alpha blending.
    Hofmann C; Sawall S; Knaup M; Kachelrieß M
    Med Phys; 2014 Jun; 41(6):061914. PubMed ID: 24877825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual energy CT using slow kVp switching acquisition and prior image constrained compressed sensing.
    Szczykutowicz TP; Chen GH
    Phys Med Biol; 2010 Nov; 55(21):6411-29. PubMed ID: 20938070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual single-source computed tomography using dual-source acquisition: a new technique for the dose-neutral intraindividual comparison of different scan protocols.
    Werncke T; Meyer BC; Wacker FK; von Falck C
    Invest Radiol; 2014 Nov; 49(11):742-8. PubMed ID: 24918463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water calibration for CT scanners with tube voltage modulation.
    Ritschl L; Bergner F; Fleischmann C; Kachelriess M
    Phys Med Biol; 2010 Jul; 55(14):4107-17. PubMed ID: 20601772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical image-domain multimaterial decomposition for dual-energy CT.
    Xue Y; Ruan R; Hu X; Kuang Y; Wang J; Long Y; Niu T
    Med Phys; 2017 Mar; 44(3):886-901. PubMed ID: 28060999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction method for DECT with one half-scan plus a second limited-angle scan using prior knowledge of complementary support set (Pri-CSS).
    Zhang W; Wang L; Li L; Niu T; Li Z; Liang N; Xue Y; Yan B; Hu G
    Phys Med Biol; 2020 Jan; 65(2):025005. PubMed ID: 31810075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy-resolved computed tomography: first experimental results.
    Shikhaliev PM
    Phys Med Biol; 2008 Oct; 53(20):5595-613. PubMed ID: 18799830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards context-sensitive CT imaging - organ-specific image formation for single (SECT) and dual energy computed tomography (DECT).
    Dorn S; Chen S; Sawall S; Maier J; Knaup M; Uhrig M; Schlemmer HP; Maier A; Lell M; Kachelrieß M
    Med Phys; 2018 Oct; 45(10):4541-4557. PubMed ID: 30098038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion.
    Lin Y; Samei E
    Med Phys; 2014 Feb; 41(2):021911. PubMed ID: 24506632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new scheme and reconstruction algorithm for dual source circular CT.
    Yan M; Zhang C; Liang H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3783-6. PubMed ID: 17945797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A technical solution to avoid partial scan artifacts in cardiac MDCT.
    Primak AN; Dong Y; Dzyubak OP; Jorgensen SM; McCollough CH; Ritman EL
    Med Phys; 2007 Dec; 34(12):4726-37. PubMed ID: 18196800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PET-enabled dual-energy CT: image reconstruction and a proof-of-concept computer simulation study.
    Wang G
    Phys Med Biol; 2020 Dec; 65(24):245028. PubMed ID: 33120376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.