These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25563347)

  • 1. The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility.
    Erdel F; Baum M; Rippe K
    J Phys Condens Matter; 2015 Feb; 27(6):064115. PubMed ID: 25563347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells.
    Baum M; Erdel F; Wachsmuth M; Rippe K
    Nat Commun; 2014 Jul; 5():4494. PubMed ID: 25058002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking.
    Tseng Y; Lee JS; Kole TP; Jiang I; Wirtz D
    J Cell Sci; 2004 Apr; 117(Pt 10):2159-67. PubMed ID: 15090601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the interior of living cells with fluorescence correlation spectroscopy.
    Weiss M
    Ann N Y Acad Sci; 2008; 1130():21-7. PubMed ID: 18096846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence fluctuation spectroscopy: an invaluable microscopy tool for uncovering the biophysical rules for navigating the nuclear landscape.
    Priest DG; Solano A; Lou J; Hinde E
    Biochem Soc Trans; 2019 Aug; 47(4):1117-1129. PubMed ID: 31278154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography.
    Guo J; Posnansky O; Hirsch S; Scheel M; Taupitz M; Braun J; Sack I
    Phys Med Biol; 2012 Jun; 57(12):4041-53. PubMed ID: 22674199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the rheology of living cell cytoplasm: poroviscoelasticity and fluid-to-solid transition.
    Thekkethil N; Köry J; Guo M; Stewart PS; Hill NA; Luo X
    Biomech Model Mechanobiol; 2024 Oct; 23(5):1551-1569. PubMed ID: 38976113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations.
    McDonald D; Carrero G; Andrin C; de Vries G; Hendzel MJ
    J Cell Biol; 2006 Feb; 172(4):541-52. PubMed ID: 16476775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.
    Bacher CP; Reichenzeller M; Athale C; Herrmann H; Eils R
    BMC Cell Biol; 2004 Nov; 5():45. PubMed ID: 15560848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid exchange of histone H1.1 on chromatin in living human cells.
    Lever MA; Th'ng JP; Sun X; Hendzel MJ
    Nature; 2000 Dec; 408(6814):873-6. PubMed ID: 11130728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium.
    Grebenkov DS; Vahabi M; Bertseva E; Forró L; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):040701. PubMed ID: 24229100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin Viscoelasticity Measured by Local Dynamic Analysis.
    Vivante A; Bronshtein I; Garini Y
    Biophys J; 2020 May; 118(9):2258-2267. PubMed ID: 32320676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy].
    Liang LF; Da X; Chen TS; Pei YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):459-62. PubMed ID: 19445227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus.
    Launholt D; Merkle T; Houben A; Schulz A; Grasser KD
    Plant Cell; 2006 Nov; 18(11):2904-18. PubMed ID: 17114349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping eGFP oligomer mobility in living cell nuclei.
    Dross N; Spriet C; Zwerger M; Müller G; Waldeck W; Langowski J
    PLoS One; 2009; 4(4):e5041. PubMed ID: 19347038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved.
    Guigas G; Kalla C; Weiss M
    FEBS Lett; 2007 Oct; 581(26):5094-8. PubMed ID: 17923125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic associations of heterochromatin protein 1 with the nuclear envelope.
    Kourmouli N; Theodoropoulos PA; Dialynas G; Bakou A; Politou AS; Cowell IG; Singh PB; Georgatos SD
    EMBO J; 2000 Dec; 19(23):6558-68. PubMed ID: 11101528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular biology. Chromatin higher order folding--wrapping up transcription.
    Horn PJ; Peterson CL
    Science; 2002 Sep; 297(5588):1824-7. PubMed ID: 12228709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy.
    Wachsmuth M; Waldeck W; Langowski J
    J Mol Biol; 2000 May; 298(4):677-89. PubMed ID: 10788329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study.
    Fritsch CC; Langowski J
    Chromosome Res; 2011 Jan; 19(1):63-81. PubMed ID: 21116704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.