These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25563347)

  • 21. Anything else but GAGA: a nonhistone protein complex reshapes chromatin structure.
    Lehmann M
    Trends Genet; 2004 Jan; 20(1):15-22. PubMed ID: 14698615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy.
    Park H; Han SS; Sako Y; Pack CG
    FASEB J; 2015 Mar; 29(3):837-48. PubMed ID: 25404711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex.
    Wu R; Wang J; Liang C
    J Cell Sci; 2012 Jan; 125(Pt 1):209-19. PubMed ID: 22250202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring Mobility in Chromatin by Intensity-Sorted FCS.
    Di Bona M; Mancini MA; Mazza D; Vicidomini G; Diaspro A; Lanzanò L
    Biophys J; 2019 Mar; 116(6):987-999. PubMed ID: 30819566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding.
    Kitamura A; Nakayama Y; Kinjo M
    Biochem Biophys Res Commun; 2015 Jul; 463(3):401-6. PubMed ID: 26032495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of cell nuclei using inert macromolecules to mimic the crowded cytoplasm.
    Hancock R; Hadj-Sahraoui Y
    PLoS One; 2009 Oct; 4(10):e7560. PubMed ID: 19851505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs.
    Pack C; Saito K; Tamura M; Kinjo M
    Biophys J; 2006 Nov; 91(10):3921-36. PubMed ID: 16950841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic manipulation of nanorods in the nucleus of living cells.
    Celedon A; Hale CM; Wirtz D
    Biophys J; 2011 Oct; 101(8):1880-6. PubMed ID: 22004741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eukaryotic replisome components cooperate to process histones during chromosome replication.
    Foltman M; Evrin C; De Piccoli G; Jones RC; Edmondson RD; Katou Y; Nakato R; Shirahige K; Labib K
    Cell Rep; 2013 Mar; 3(3):892-904. PubMed ID: 23499444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm.
    Weber SC; Spakowitz AJ; Theriot JA
    Phys Rev Lett; 2010 Jun; 104(23):238102. PubMed ID: 20867274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The WD40-repeat protein Pwp1p associates in vivo with 25S ribosomal chromatin in a histone H4 tail-dependent manner.
    Suka N; Nakashima E; Shinmyozu K; Hidaka M; Jingami H
    Nucleic Acids Res; 2006; 34(12):3555-67. PubMed ID: 16855292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system.
    Geiman TM; Sankpal UT; Robertson AK; Zhao Y; Zhao Y; Robertson KD
    Biochem Biophys Res Commun; 2004 May; 318(2):544-55. PubMed ID: 15120635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and function of protein modules in chromatin biology.
    Yap KL; Zhou MM
    Results Probl Cell Differ; 2006; 41():1-23. PubMed ID: 16909888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of viscoelastic properties of the cellular cytoplasm using optically trapped Brownian probes.
    Vaippully R; Ramanujan V; Bajpai S; Roy B
    J Phys Condens Matter; 2020 May; 32(23):235101. PubMed ID: 32059195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The connection between chromatin motion on the 100 nm length scale and core histone dynamics in live XTC-2 cells and isolated nuclei.
    Davis SK; Bardeen CJ
    Biophys J; 2004 Jan; 86(1 Pt 1):555-64. PubMed ID: 14695300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the nanoscale viscoelasticity of intracellular fluids in living cells.
    Guigas G; Kalla C; Weiss M
    Biophys J; 2007 Jul; 93(1):316-23. PubMed ID: 17416631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The many colours of chromodomains.
    Brehm A; Tufteland KR; Aasland R; Becker PB
    Bioessays; 2004 Feb; 26(2):133-40. PubMed ID: 14745831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissecting chromatin interactions in living cells from protein mobility maps.
    Erdel F; Müller-Ott K; Baum M; Wachsmuth M; Rippe K
    Chromosome Res; 2011 Jan; 19(1):99-115. PubMed ID: 20848178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring the dynamics of chromatin proteins during differentiation.
    Harikumar A; Meshorer E
    Methods Mol Biol; 2013; 1042():173-80. PubMed ID: 23980007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.