BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 25563412)

  • 1. Can numerical modeling help understand the fate of tau protein in the axon terminal?
    Kuznetsov IA; Kuznetsov AV
    Comput Methods Biomech Biomed Engin; 2016; 19(2):115-25. PubMed ID: 25563412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating sensitivity coefficients characterizing the response of a model of tau protein transport in an axon to model parameters.
    Kuznetsov IA; Kuznetsov AV
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):71-83. PubMed ID: 30580604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What mechanisms of tau protein transport could be responsible for the inverted tau concentration gradient in degenerating axons?
    Kuznetsov IA; Kuznetsov AV
    Math Med Biol; 2017 Mar; 34(1):125-150. PubMed ID: 27034421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between the diffusion-reaction and slow axonal transport models for predicting tau distribution along an axon.
    Kuznetsov IA; Kuznetsov AV
    Math Med Biol; 2015 Sep; 32(3):263-83. PubMed ID: 24573186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling tau transport in the axon initial segment.
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2020 Nov; 329():108468. PubMed ID: 32920097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization.
    Gauthier-Kemper A; Suárez Alonso M; Sündermann F; Niewidok B; Fernandez MP; Bakota L; Heinisch JJ; Brandt R
    J Biol Chem; 2018 May; 293(21):8065-8076. PubMed ID: 29636414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why slow axonal transport is bidirectional - can axonal transport of tau protein rely only on motor-driven anterograde transport?
    Kuznetsov IA; Kuznetsov AV
    Comput Methods Biomech Biomed Engin; 2024 Apr; 27(5):620-631. PubMed ID: 37068039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynein Dysfunction Prevents Maintenance of High Concentrations of Slow Axonal Transport Cargos at the Axon Terminal: A Computational Study.
    Kuznetsov IA; Kuznetsov AV
    J Biomech Eng; 2023 Jul; 145(7):. PubMed ID: 36795013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes.
    Niewidok B; Igaev M; Sündermann F; Janning D; Bakota L; Brandt R
    Mol Biol Cell; 2016 Nov; 27(22):3537-3549. PubMed ID: 27582388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein.
    Kuznetsov IA; Kuznetsov AV
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1485-94. PubMed ID: 24867161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain.
    Brandt R; Léger J; Lee G
    J Cell Biol; 1995 Dec; 131(5):1327-40. PubMed ID: 8522593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation for a neurotransmitter transport model in the axon terminal of a presynaptic neuron.
    Bielecki A; Kalita P; Lewandowski M; Siwek B
    Biol Cybern; 2010 Jun; 102(6):489-502. PubMed ID: 20407909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What tau distribution maximizes fast axonal transport toward the axonal synapse?
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2014 Jul; 253():19-24. PubMed ID: 24747683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical models of α-synuclein transport in axons.
    Kuznetsov IA; Kuznetsov AV
    Comput Methods Biomech Biomed Engin; 2016; 19(5):515-26. PubMed ID: 26207359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis.
    Liu Y; Wang C; Destin G; Szaro BG
    Eur J Neurosci; 2015 May; 41(10):1263-75. PubMed ID: 25656701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains.
    Qiang L; Sun X; Austin TO; Muralidharan H; Jean DC; Liu M; Yu W; Baas PW
    Curr Biol; 2018 Jul; 28(13):2181-2189.e4. PubMed ID: 30008334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional, unlike unidirectional transport, allows transporting axonal cargos against their concentration gradient.
    Kuznetsov IA; Kuznetsov AV
    J Theor Biol; 2022 Aug; 546():111161. PubMed ID: 35569529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tau neurotoxicity and rescue in animal models of human Tauopathies.
    Krüger L; Mandelkow EM
    Curr Opin Neurobiol; 2016 Feb; 36():52-8. PubMed ID: 26431808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A refined reaction-diffusion model of tau-microtubule dynamics and its application in FDAP analysis.
    Igaev M; Janning D; Sündermann F; Niewidok B; Brandt R; Junge W
    Biophys J; 2014 Dec; 107(11):2567-78. PubMed ID: 25468336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility.
    Stern JL; Lessard DV; Hoeprich GJ; Morfini GA; Berger CL
    Mol Biol Cell; 2017 Apr; 28(8):1079-1087. PubMed ID: 28251926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.