These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 2556373)
1. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. Aslanidis C; Schmid K; Schmitt R J Bacteriol; 1989 Dec; 171(12):6753-63. PubMed ID: 2556373 [TBL] [Abstract][Full Text] [Related]
2. Role of two operators in regulating the plasmid-borne raf operon of Escherichia coli. Muiznieks I; Schmitt R Mol Gen Genet; 1994 Jan; 242(1):90-9. PubMed ID: 8277949 [TBL] [Abstract][Full Text] [Related]
3. Regulatory elements of the raffinose operon: nucleotide sequences of operator and repressor genes. Aslanidis C; Schmitt R J Bacteriol; 1990 Apr; 172(4):2178-80. PubMed ID: 2180920 [TBL] [Abstract][Full Text] [Related]
4. Identification of a new porin, RafY, encoded by raffinose plasmid pRSD2 of Escherichia coli. Ulmke C; Lengeler JW; Schmid K J Bacteriol; 1997 Sep; 179(18):5783-8. PubMed ID: 9294435 [TBL] [Abstract][Full Text] [Related]
5. Amino acids that confer transport of raffinose and maltose sugars in the raffinose permease (RafB) of Escherichia coli as implicated by spontaneous mutations at Val-35, Ser-138, Ser-139, Gly-389 and Ile-391. Van Camp BM; Crow RR; Peng Y; Varela MF J Membr Biol; 2007 Dec; 220(1-3):87-95. PubMed ID: 18008022 [TBL] [Abstract][Full Text] [Related]
6. The dipeptide permease of Escherichia coli closely resembles other bacterial transport systems and shows growth-phase-dependent expression. Abouhamad WN; Manson MD Mol Microbiol; 1994 Dec; 14(5):1077-92. PubMed ID: 7536291 [TBL] [Abstract][Full Text] [Related]
7. Nucleotide sequence of the transcriptional control region of the osmotically regulated proU operon of Salmonella typhimurium and identification of the 5' endpoint of the proU mRNA. Overdier DG; Olson ER; Erickson BD; Ederer MM; Csonka LN J Bacteriol; 1989 Sep; 171(9):4694-706. PubMed ID: 2548994 [TBL] [Abstract][Full Text] [Related]
8. Nucleotide sequence of the promoter region of the melibiose operon of Escherichia coli. Shimamoto T; Yazyu H; Futai M; Tsuchiya T Biochem Biophys Res Commun; 1984 May; 121(1):41-6. PubMed ID: 6329200 [TBL] [Abstract][Full Text] [Related]
9. Conservation of the genetic switch between replication and transfer genes of IncP plasmids but divergence of the replication functions which are major host-range determinants. Thorsted PB; Shah DS; Macartney D; Kostelidou K; Thomas CM Plasmid; 1996 Sep; 36(2):95-111. PubMed ID: 8954881 [TBL] [Abstract][Full Text] [Related]
10. Relationships among raffinose plasmids determined by the immunochemical cross-reaction of their alpha-galactosidases. Schmid K; Ritschewald S; Schmitt R J Gen Microbiol; 1979 Oct; 114(2):477-81. PubMed ID: 94343 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Bockmann J; Heuel H; Lengeler JW Mol Gen Genet; 1992 Oct; 235(1):22-32. PubMed ID: 1435727 [TBL] [Abstract][Full Text] [Related]
12. Raffinose metabolism in Escherichia coli K12. Purification and properties of a new alpha-galactosidase specified by a transmissible plasmid. Schmid K; Schmitt R Eur J Biochem; 1976 Aug; 67(1):95-104. PubMed ID: 786627 [TBL] [Abstract][Full Text] [Related]
13. Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Nohno T; Saito T; Hong JS Mol Gen Genet; 1986 Nov; 205(2):260-9. PubMed ID: 3027504 [TBL] [Abstract][Full Text] [Related]
14. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. Sumantran VN; Schweizer HP; Datta P J Bacteriol; 1990 Aug; 172(8):4288-94. PubMed ID: 2115866 [TBL] [Abstract][Full Text] [Related]
16. Mutations in the lacY gene of Escherichia coli define functional organization of lactose permease. Mieschendahl M; Büchel D; Bocklage H; Müller-Hill B Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7652-6. PubMed ID: 6278484 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the raffinose permease of Escherichia coli by the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system. Titgemeyer F; Mason RE; Saier MH J Bacteriol; 1994 Jan; 176(2):543-6. PubMed ID: 8288553 [TBL] [Abstract][Full Text] [Related]
18. [Regulation in the expression of alpha-galactosidase gene in raf operon in Escherichia coli]. Su TZ; Qi S; Yun WH; Xiu L Wei Sheng Wu Xue Bao; 1989 Jun; 29(3):180-6. PubMed ID: 2551100 [TBL] [Abstract][Full Text] [Related]
19. Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved. Leong-Morgenthaler P; Zwahlen MC; Hottinger H J Bacteriol; 1991 Mar; 173(6):1951-7. PubMed ID: 1705929 [TBL] [Abstract][Full Text] [Related]
20. Successive binding of raf repressor to adjacent raf operator sites in vitro. Aslanidis C; Muiznieks I; Schmitt R Mol Gen Genet; 1990 Sep; 223(2):297-304. PubMed ID: 2250654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]