These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 25563843)
1. Electrochemical performance and carbon deposition resistance of M-BaZr₀.₁Ce₀.₇Y₀.₁Yb₀.₁O₃₋δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells. Li M; Hua B; Pu J; Chi B; Jian L Sci Rep; 2015 Jan; 5():7667. PubMed ID: 25563843 [TBL] [Abstract][Full Text] [Related]
2. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
3. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells. Yue X; Arenillas A; Irvine JT Faraday Discuss; 2016 Aug; 190():269-89. PubMed ID: 27272986 [TBL] [Abstract][Full Text] [Related]
4. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570 [TBL] [Abstract][Full Text] [Related]
5. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration. Li M; Hua B; Luo JL; Jiang SP; Pu J; Chi B; Li J ACS Appl Mater Interfaces; 2016 Apr; 8(16):10293-301. PubMed ID: 27052726 [TBL] [Abstract][Full Text] [Related]
6. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts. Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640 [TBL] [Abstract][Full Text] [Related]
7. A redox-stable efficient anode for solid-oxide fuel cells. Tao S; Irvine JT Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533 [TBL] [Abstract][Full Text] [Related]
8. Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Shin TH; Okamoto Y; Ida S; Ishihara T Chemistry; 2012 Sep; 18(37):11695-702. PubMed ID: 22865585 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Electrochemical Deposition Route for the Facile Nanofabrication of a Cr-Poisoning-Tolerant La(Ni,Fe)O Shaur A; Rehman SU; Kim HS; Song RH; Lim TH; Hong JE; Park SJ; Lee SB ACS Appl Mater Interfaces; 2020 Feb; 12(5):5730-5738. PubMed ID: 31918549 [TBL] [Abstract][Full Text] [Related]
10. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La Chen K; Li N; Ai N; Cheng Y; Rickard WD; Jiang SP ACS Appl Mater Interfaces; 2016 Nov; 8(46):31729-31737. PubMed ID: 27808496 [TBL] [Abstract][Full Text] [Related]
11. Performance of a Direct Methane Solid Oxide Fuel Cell Using Nickel-Ceria-Yttria Stabilized Zirconia as the Anode. Escudero MJ; Yeste MP; Cauqui MÁ; Muñoz MÁ Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012909 [TBL] [Abstract][Full Text] [Related]
12. Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells. Pomfret MB; Demircan O; Sukeshini AM; Walker RA Environ Sci Technol; 2006 Sep; 40(17):5574-9. PubMed ID: 16999142 [TBL] [Abstract][Full Text] [Related]
13. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film. Chen Y; Zhang Y; Baker J; Majumdar P; Yang Z; Han M; Chen F ACS Appl Mater Interfaces; 2014 Apr; 6(7):5130-6. PubMed ID: 24621230 [TBL] [Abstract][Full Text] [Related]
14. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells. Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116 [TBL] [Abstract][Full Text] [Related]
15. Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Tao S; Irvine JT Chem Rec; 2004; 4(2):83-95. PubMed ID: 15073876 [TBL] [Abstract][Full Text] [Related]
16. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. Wang F; Wang W; Qu J; Zhong Y; Tade MO; Shao Z Environ Sci Technol; 2014 Oct; 48(20):12427-34. PubMed ID: 25229807 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional microstructure of high-performance pulsed-laser deposited Ni-YSZ SOFC anodes. Kennouche D; Hong J; Noh HS; Son JW; Barnett SA Phys Chem Chem Phys; 2014 Aug; 16(29):15249-55. PubMed ID: 24938312 [TBL] [Abstract][Full Text] [Related]
18. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. Su C; Shao Z; Lin Y; Wu Y; Wang H Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505 [TBL] [Abstract][Full Text] [Related]
19. Importance of oxygen spillover for fuel oxidation on Ni/YSZ anodes in solid oxide fuel cells. Fu Z; Wang M; Zuo P; Yang Z; Wu R Phys Chem Chem Phys; 2014 May; 16(18):8536-40. PubMed ID: 24671516 [TBL] [Abstract][Full Text] [Related]
20. Synergistic Coupling of Proton Conductors BaZr Li W; Guan B; Ma L; Tian H; Liu X ACS Appl Mater Interfaces; 2019 May; 11(20):18323-18330. PubMed ID: 31051074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]