These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25563937)

  • 1. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting.
    Jung SY; Notton T; Fong E; Shusteff M; Weinberger LS
    Lab Chip; 2015 Feb; 15(4):1000-3. PubMed ID: 25563937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Acoustofluidics in Bioanalytical Chemistry.
    Li P; Huang TJ
    Anal Chem; 2019 Jan; 91(1):757-767. PubMed ID: 30561981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device.
    Jakobsson O; Oh SS; Antfolk M; Eisenstein M; Laurell T; Soh HT
    Anal Chem; 2015 Aug; 87(16):8497-502. PubMed ID: 26226316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustofluidics 20: applications in acoustic trapping.
    Evander M; Nilsson J
    Lab Chip; 2012 Nov; 12(22):4667-76. PubMed ID: 23047553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachable acoustofluidic droplet-sorter.
    Das D; Huang SH; Weng CL; Yu CH; Hsu CK; Lee YC; Cheng HC; Chuang HS
    Anal Chim Acta; 2024 Sep; 1321():343043. PubMed ID: 39155105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous microwells for geometry-selective, large-scale microparticle arrays.
    Kim JJ; Bong KW; ReƔtegui E; Irimia D; Doyle PS
    Nat Mater; 2017 Jan; 16(1):139-146. PubMed ID: 27595351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numbering-up strategy of hydrodynamic microfluidic filters for continuous-flow high-throughput cell sorting.
    Ozawa R; Iwadate H; Toyoda H; Yamada M; Seki M
    Lab Chip; 2019 May; 19(10):1828-1837. PubMed ID: 30998230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis.
    Augustsson P; Laurell T
    Lab Chip; 2012 Apr; 12(10):1742-52. PubMed ID: 22465997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
    Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ
    J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves.
    Ning S; Liu S; Xiao Y; Zhang G; Cui W; Reed M
    Lab Chip; 2021 Nov; 21(23):4608-4617. PubMed ID: 34763349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustophoretic sorting of viable mammalian cells in a microfluidic device.
    Yang AH; Soh HT
    Anal Chem; 2012 Dec; 84(24):10756-62. PubMed ID: 23157478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.