These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25564182)

  • 1. Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou's PseAAC.
    Mandal M; Mukhopadhyay A; Maulik U
    Med Biol Eng Comput; 2015 Apr; 53(4):331-44. PubMed ID: 25564182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: Approaches with minimal redundancy maximal relevance feature selection.
    Jiao YS; Du PF
    J Theor Biol; 2016 Aug; 402():38-44. PubMed ID: 27155042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach.
    Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H
    Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the concept of Chou's pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies.
    Zhang SW; Zhang YL; Yang HF; Zhao CH; Pan Q
    Amino Acids; 2008 May; 34(4):565-72. PubMed ID: 18074191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC.
    Zhang S; Duan X
    J Theor Biol; 2018 Jan; 437():239-250. PubMed ID: 29100918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components.
    Ahmad J; Hayat M
    J Theor Biol; 2019 Feb; 463():99-109. PubMed ID: 30562500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a novel AdaBoost algorithm and Chou's Pseudo amino acid composition for predicting protein subcellular localization.
    Lin J; Wang Y
    Protein Pept Lett; 2011 Dec; 18(12):1219-25. PubMed ID: 21728988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
    Ni Q; Chen L
    Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou's PseAAC.
    Pacharawongsakda E; Theeramunkong T
    IEEE Trans Nanobioscience; 2013 Dec; 12(4):311-20. PubMed ID: 23864226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new signal characterization and signal-based Chou's PseAAC representation of protein sequences.
    Sanchez V; Peinado AM; Pérez-Córdoba JL; Gómez AM
    J Bioinform Comput Biol; 2015 Oct; 13(5):1550024. PubMed ID: 26434573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features.
    Li B; Cai L; Liao B; Fu X; Bing P; Yang J
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30845684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting viral protein subcellular localization with Chou's pseudo amino acid composition and imbalance-weighted multi-label K-nearest neighbor algorithm.
    Cao JZ; Liu WQ; Gu H
    Protein Pept Lett; 2012 Nov; 19(11):1163-9. PubMed ID: 22185509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of subcellular localization of apoptosis protein using Chou's pseudo amino acid composition.
    Lin H; Wang H; Ding H; Chen YL; Li QZ
    Acta Biotheor; 2009 Sep; 57(3):321-30. PubMed ID: 19169652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC.
    Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predict protein structural class by incorporating two different modes of evolutionary information into Chou's general pseudo amino acid composition.
    Liang Y; Zhang S
    J Mol Graph Model; 2017 Nov; 78():110-117. PubMed ID: 29055184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supersecondary structure prediction using Chou's pseudo amino acid composition.
    Zou D; He Z; He J; Xia Y
    J Comput Chem; 2011 Jan; 32(2):271-8. PubMed ID: 20652881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy.
    Jiang X; Wei R; Zhang T; Gu Q
    Protein Pept Lett; 2008; 15(4):392-6. PubMed ID: 18473953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating secondary features into the general form of Chou's PseAAC for predicting protein structural class.
    Liao B; Xiang Q; Li D
    Protein Pept Lett; 2012 Nov; 19(11):1133-8. PubMed ID: 22185510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting subcellular localization of multi-label proteins by incorporating the sequence features into Chou's PseAAC.
    Javed F; Hayat M
    Genomics; 2019 Dec; 111(6):1325-1332. PubMed ID: 30196077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.