BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25564319)

  • 1. Forced unraveling of chromatin fibers with nonuniform linker DNA lengths.
    Ozer G; Collepardo-Guevara R; Schlick T
    J Phys Condens Matter; 2015 Feb; 27(6):064113. PubMed ID: 25564319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
    Collepardo-Guevara R; Schlick T
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8061-6. PubMed ID: 24847063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical role for linker DNA in higher-order folding of chromatin fibers.
    Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J
    Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling studies of chromatin fiber structure as a function of DNA linker length.
    Perišić O; Collepardo-Guevara R; Schlick T
    J Mol Biol; 2010 Nov; 403(5):777-802. PubMed ID: 20709077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of chromatin stretching.
    Aumann F; Lankas F; Caudron M; Langowski J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041927. PubMed ID: 16711856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Chromatin Fibers: Comparison of Monte Carlo Simulations with Force Spectroscopy.
    Norouzi D; Zhurkin VB
    Biophys J; 2018 Nov; 115(9):1644-1655. PubMed ID: 30236784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments.
    Arya G; Schlick T
    J Phys Chem A; 2009 Apr; 113(16):4045-59. PubMed ID: 19298048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes.
    Schlick T; Perisić O
    Phys Chem Chem Phys; 2009 Dec; 11(45):10729-37. PubMed ID: 20145817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kilobase Pair Chromatin Fiber Contacts Promoted by Living-System-Like DNA Linker Length Distributions and Nucleosome Depletion.
    Bascom GD; Kim T; Schlick T
    J Phys Chem B; 2017 Apr; 121(15):3882-3894. PubMed ID: 28299939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatosome Structure and Dynamics from Molecular Simulations.
    Öztürk MA; De M; Cojocaru V; Wade RC
    Annu Rev Phys Chem; 2020 Apr; 71():101-119. PubMed ID: 32017651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
    Grigoryev SA; Arya G; Correll S; Woodcock CL; Schlick T
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13317-22. PubMed ID: 19651606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosome Clutches are Regulated by Chromatin Internal Parameters.
    Portillo-Ledesma S; Tsao LH; Wagley M; Lakadamyali M; Cosma MP; Schlick T
    J Mol Biol; 2021 Mar; 433(6):166701. PubMed ID: 33181171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscale Modeling Reveals Hierarchical Looping of Chromatin Fibers Near Gene Regulatory Elements.
    Bascom GD; Sanbonmatsu KY; Schlick T
    J Phys Chem B; 2016 Aug; 120(33):8642-53. PubMed ID: 27218881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive effect of linker histone binding mode and subtype on chromatin condensation.
    Perišić O; Portillo-Ledesma S; Schlick T
    Nucleic Acids Res; 2019 Jun; 47(10):4948-4957. PubMed ID: 30968131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of chromatin folding by conformational variations of nucleosome linker DNA.
    Buckwalter JM; Norouzi D; Harutyunyan A; Zhurkin VB; Grigoryev SA
    Nucleic Acids Res; 2017 Sep; 45(16):9372-9387. PubMed ID: 28934465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes.
    Collepardo-Guevara R; Schlick T
    Nucleic Acids Res; 2012 Oct; 40(18):8803-17. PubMed ID: 22790986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigid Basepair Monte Carlo Simulations of One-Start and Two-Start Chromatin Fiber Unfolding by Force.
    de Jong BE; Brouwer TB; Kaczmarczyk A; Visscher B; van Noort J
    Biophys J; 2018 Nov; 115(10):1848-1859. PubMed ID: 30366627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depletion effects massively change chromatin properties and influence genome folding.
    Diesinger PM; Heermann DW
    Biophys J; 2009 Oct; 97(8):2146-53. PubMed ID: 19843447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.