These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 25564608)

  • 41. PACRG and FAP20 form the inner junction of axonemal doublet microtubules and regulate ciliary motility.
    Dymek EE; Lin J; Fu G; Porter ME; Nicastro D; Smith EF
    Mol Biol Cell; 2019 Jul; 30(15):1805-1816. PubMed ID: 31116684
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A solid-state control system for dynein-based ciliary/flagellar motility.
    King SM
    J Cell Biol; 2013 Apr; 201(2):173-5. PubMed ID: 23569213
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product.
    Rupp G; Porter ME
    J Cell Biol; 2003 Jul; 162(1):47-57. PubMed ID: 12847082
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella.
    Yagi T; Uematsu K; Liu Z; Kamiya R
    J Cell Sci; 2009 May; 122(Pt 9):1306-14. PubMed ID: 19351714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The complex of outer-arm dynein light chain-1 and the microtubule-binding domain of the γ heavy chain shows how axonemal dynein tunes ciliary beating.
    Toda A; Nishikawa Y; Tanaka H; Yagi T; Kurisu G
    J Biol Chem; 2020 Mar; 295(12):3982-3989. PubMed ID: 32014992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9.
    Yagi T; Minoura I; Fujiwara A; Saito R; Yasunaga T; Hirono M; Kamiya R
    J Biol Chem; 2005 Dec; 280(50):41412-20. PubMed ID: 16236707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii.
    Yamamoto R; Hwang J; Ishikawa T; Kon T; Sale WS
    Cytoskeleton (Hoboken); 2021 Mar; 78(3):77-96. PubMed ID: 33876572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular tools for studying the radial spoke.
    Zhu X; Liu Y; Sivadas P; Gupta A; Yang P
    Methods Enzymol; 2013; 524():19-36. PubMed ID: 23498732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei.
    Höög JL; Lacomble S; O'Toole ET; Hoenger A; McIntosh JR; Gull K
    Elife; 2014; 3():e01479. PubMed ID: 24448408
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional binding of inner-arm dyneins with demembranated flagella of Chlamydomonas mutants.
    Yamamoto R; Yagi T; Kamiya R
    Cell Motil Cytoskeleton; 2006 May; 63(5):258-65. PubMed ID: 16518818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism.
    Ghanaeian A; Majhi S; McCafferty CL; Nami B; Black CS; Yang SK; Legal T; Papoulas O; Janowska M; Valente-Paterno M; Marcotte EM; Wloga D; Bui KH
    Nat Commun; 2023 Sep; 14(1):5741. PubMed ID: 37714832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional structures of the flagellar dynein-microtubule complex by cryoelectron microscopy.
    Oda T; Hirokawa N; Kikkawa M
    J Cell Biol; 2007 Apr; 177(2):243-52. PubMed ID: 17438074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa.
    Castaneda JM; Hua R; Miyata H; Oji A; Guo Y; Cheng Y; Zhou T; Guo X; Cui Y; Shen B; Wang Z; Hu Z; Zhou Z; Sha J; Prunskaite-Hyyrylainen R; Yu Z; Ramirez-Solis R; Ikawa M; Matzuk MM; Liu M
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5370-E5378. PubMed ID: 28630322
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional structural labeling microscopy of cilia and flagella.
    Oda T
    Microscopy (Oxf); 2017 Aug; 66(4):234-244. PubMed ID: 28541401
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM; Kabututu ZP; Hill KL
    J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mutations in the "dynein regulatory complex" alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes.
    Piperno G; Mead K; LeDizet M; Moscatelli A
    J Cell Biol; 1994 Jun; 125(5):1109-17. PubMed ID: 8195292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Big steps toward understanding dynein.
    Kikkawa M
    J Cell Biol; 2013 Jul; 202(1):15-23. PubMed ID: 23836927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ATP-induced conformational change of axonemal outer dynein arms revealed by cryo-electron tomography.
    Zimmermann N; Noga A; Obbineni JM; Ishikawa T
    EMBO J; 2023 Jun; 42(12):e112466. PubMed ID: 37051721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella.
    Bui KH; Sakakibara H; Movassagh T; Oiwa K; Ishikawa T
    J Cell Biol; 2008 Dec; 183(5):923-32. PubMed ID: 19029338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins.
    Kikushima K
    Cell Motil Cytoskeleton; 2009 May; 66(5):272-80. PubMed ID: 19347929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.