BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 25564717)

  • 21. Physical and functional interactions between MutY glycosylase homologue (MYH) and checkpoint proteins Rad9-Rad1-Hus1.
    Shi G; Chang DY; Cheng CC; Guan X; Venclovas C; Lu AL
    Biochem J; 2006 Nov; 400(1):53-62. PubMed ID: 16879101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes.
    Venclovas C; Thelen MP
    Nucleic Acids Res; 2000 Jul; 28(13):2481-93. PubMed ID: 10871397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opening pathways of the DNA clamps proliferating cell nuclear antigen and Rad9-Rad1-Hus1.
    Xu X; Guardiani C; Yan C; Ivanov I
    Nucleic Acids Res; 2013 Dec; 41(22):10020-31. PubMed ID: 24038358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage.
    Kostrub CF; Knudsen K; Subramani S; Enoch T
    EMBO J; 1998 Apr; 17(7):2055-66. PubMed ID: 9524127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intramolecular Binding of the Rad9 C Terminus in the Checkpoint Clamp Rad9-Hus1-Rad1 Is Closely Linked with Its DNA Binding.
    Takeishi Y; Iwaya-Omi R; Ohashi E; Tsurimoto T
    J Biol Chem; 2015 Aug; 290(32):19923-32. PubMed ID: 26088138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex.
    Huang J; Yuan H; Lu C; Liu X; Cao X; Wan M
    J Mol Biol; 2007 Aug; 371(2):514-27. PubMed ID: 17583730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell cycle-dependent processing of DNA lesions controls localization of Rad9 to sites of genotoxic stress.
    Warmerdam DO; Freire R; Kanaar R; Smits VA
    Cell Cycle; 2009 Jun; 8(11):1765-74. PubMed ID: 19411845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Casein kinase 2-dependent phosphorylation of human Rad9 mediates the interaction between human Rad9-Hus1-Rad1 complex and TopBP1.
    Takeishi Y; Ohashi E; Ogawa K; Masai H; Obuse C; Tsurimoto T
    Genes Cells; 2010 Jun; 15(7):761-71. PubMed ID: 20545769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair.
    Panigrahi SK; Hopkins KM; Lieberman HB
    Nucleic Acids Res; 2015 May; 43(9):4531-46. PubMed ID: 25873625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Telomere and telomerase modulation by the mammalian Rad9/Rad1/Hus1 DNA-damage-checkpoint complex.
    Francia S; Weiss RS; Hande MP; Freire R; d'Adda di Fagagna F
    Curr Biol; 2006 Aug; 16(15):1551-8. PubMed ID: 16890531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Downregulation of Hus1 by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin.
    Kinzel B; Hall J; Natt F; Weiler J; Cohen D
    Cancer; 2002 Mar; 94(6):1808-14. PubMed ID: 11920544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction between human mismatch repair recognition proteins and checkpoint sensor Rad9-Rad1-Hus1.
    Bai H; Madabushi A; Guan X; Lu AL
    DNA Repair (Amst); 2010 May; 9(5):478-87. PubMed ID: 20188637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The J domain of Tpr2 regulates its interaction with the proapoptotic and cell-cycle checkpoint protein, Rad9.
    Xiang SL; Kumano T; Iwasaki SI; Sun X; Yoshioka K; Yamamoto KC
    Biochem Biophys Res Commun; 2001 Oct; 287(4):932-40. PubMed ID: 11573955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cloning and tissue-specific expression of Mrad9, a murine orthologue of the Schizosaccharomyces pombe rad9+ checkpoint control gene.
    Hang H; Rauth SJ; Hopkins KM; Davey SK; Lieberman HB
    J Cell Physiol; 1998 Nov; 177(2):241-7. PubMed ID: 9766521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of Hus1 sensitizes cells to etoposide-induced apoptosis by regulating BH3-only proteins.
    Meyerkord CL; Takahashi Y; Araya R; Takada N; Weiss RS; Wang HG
    Oncogene; 2008 Dec; 27(58):7248-59. PubMed ID: 18794804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Critical role for chicken Rad17 and Rad9 in the cellular response to DNA damage and stalled DNA replication.
    Kobayashi M; Hirano A; Kumano T; Xiang SL; Mihara K; Haseda Y; Matsui O; Shimizu H; Yamamoto K
    Genes Cells; 2004 Apr; 9(4):291-303. PubMed ID: 15066121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Rad9-Rad1-Hus1 DNA Repair Clamp is Found in Microsporidia.
    Mascarenhas Dos Santos AC; Julian AT; Pombert JF
    Genome Biol Evol; 2022 Apr; 14(4):. PubMed ID: 35439302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rad9 is upregulated and plays protective roles in an acute lung injury model.
    Yamamoto M; Nishiuma T; Kobayashi K; Maniwa Y; Sakashita A; Funada Y; Kotani Y; Nishimura Y
    Biochem Biophys Res Commun; 2008 Nov; 376(3):590-4. PubMed ID: 18809378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity.
    Friedrich-Heineken E; Toueille M; Tännler B; Bürki C; Ferrari E; Hottiger MO; Hübscher U
    J Mol Biol; 2005 Nov; 353(5):980-9. PubMed ID: 16216273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9-Rad1-Hus1 checkpoint clamp.
    Hwang BJ; Jin J; Gao Y; Shi G; Madabushi A; Yan A; Guan X; Zalzman M; Nakajima S; Lan L; Lu AL
    BMC Mol Biol; 2015 Jun; 16():12. PubMed ID: 26063178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.