BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25564850)

  • 1. Two-bubble acoustic tweezing cytometry for biomechanical probing and stimulation of cells.
    Chen D; Sun Y; Gudur MS; Hsiao YS; Wu Z; Fu J; Deng CX
    Biophys J; 2015 Jan; 108(1):32-42. PubMed ID: 25564850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Viscoelastic Properties of Cells Using Acoustic Tweezing Cytometry.
    Yang C; Chen D; Hong X
    J Ultrasound Med; 2016 Dec; 35(12):2537-2542. PubMed ID: 27872412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation.
    Xue X; Hong X; Li Z; Deng CX; Fu J
    Biomaterials; 2017 Jul; 134():22-30. PubMed ID: 28453955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Tweezing Cytometry Induces Rapid Initiation of Human Embryonic Stem Cell Differentiation.
    Topal T; Hong X; Xue X; Fan Z; Kanetkar N; Nguyen JT; Fu J; Deng CX; Krebsbach PH
    Sci Rep; 2018 Aug; 8(1):12977. PubMed ID: 30154528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving survival of disassociated human embryonic stem cells by mechanical stimulation using acoustic tweezing cytometry.
    Chen D; Sun Y; Deng CX; Fu J
    Biophys J; 2015 Mar; 108(6):1315-1317. PubMed ID: 25809245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid responses of human pluripotent stem cells to cyclic mechanical strains applied to integrin by acoustic tweezing cytometry.
    Xu Z; Liu S; Xue X; Li W; Fu J; Deng CX
    Sci Rep; 2023 Oct; 13(1):18030. PubMed ID: 37865697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.
    Garbin V; Overvelde M; Dollet B; de Jong N; Lohse D; Versluis M
    Phys Med Biol; 2011 Oct; 56(19):6161-77. PubMed ID: 21878709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic tweezing cytometry for mechanical phenotyping of macrophages and mechanopharmaceutical cytotripsy.
    Hong X; Rzeczycki PM; Keswani RK; Murashov MD; Fan Z; Deng CX; Rosania GR
    Sci Rep; 2019 Apr; 9(1):5702. PubMed ID: 30952950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic tweezing cytometry for live-cell subcellular modulation of intracellular cytoskeleton contractility.
    Fan Z; Sun Y; Di Chen ; Tay D; Chen W; Deng CX; Fu J
    Sci Rep; 2013; 3():2176. PubMed ID: 23846290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic Actuation of Integrin-Bound Microbubbles for Mechanical Phenotyping during Differentiation and Morphogenesis of Human Embryonic Stem Cells.
    Fan Z; Xue X; Perera R; Nasr Esfahani S; Exner AA; Fu J; Deng CX
    Small; 2018 Dec; 14(50):e1803137. PubMed ID: 30427572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic microposts as an approach to apply forces to living cells.
    Sniadecki NJ; Anguelouch A; Yang MT; Lamb CM; Liu Z; Kirschner SB; Liu Y; Reich DH; Chen CS
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14553-8. PubMed ID: 17804810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrin-Targeted Cyclic Forces Accelerate Neural Tube-Like Rosette Formation from Human Embryonic Stem Cells.
    Topal T; Fan Z; Deng LY; Krebsbach PH; Deng CX
    Adv Biosyst; 2019 Oct; 3(10):e1900064. PubMed ID: 32648720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA mechanotechnology reveals that integrin receptors apply pN forces in podosomes on fluid substrates.
    Glazier R; Brockman JM; Bartle E; Mattheyses AL; Destaing O; Salaita K
    Nat Commun; 2019 Oct; 10(1):4507. PubMed ID: 31628308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic-Glycoengineering-Enabled Molecularly Specific Acoustic Tweezing Cytometry for Targeted Mechanical Stimulation of Cell Surface Sialoglycans.
    Li W; Guo J; Hobson EC; Xue X; Li Q; Fu J; Deng CX; Guo Z
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202401921. PubMed ID: 38498603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ultrasound on adherent microbubble contrast agents.
    Loughran J; Sennoga C; J Eckersley R; Tang MX
    Phys Med Biol; 2012 Nov; 57(21):6999-7014. PubMed ID: 23044731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of coupling, bubble size, and spatial arrangement on chaotic dynamics of microbubble cluster in ultrasonic fields.
    Dzaharudin F; Suslov SA; Manasseh R; Ooi A
    J Acoust Soc Am; 2013 Nov; 134(5):3425-34. PubMed ID: 24180753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress.
    Heureaux J; Chen D; Murray VL; Deng CX; Liu AP
    Cell Mol Bioeng; 2014 Sep; 7(3):307-319. PubMed ID: 25606062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts.
    Harn HI; Wang YK; Hsu CK; Ho YT; Huang YW; Chiu WT; Lin HH; Cheng CM; Tang MJ
    Exp Dermatol; 2015 Aug; 24(8):579-84. PubMed ID: 25877039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation microstreaming generated by a bubble pair in an ultrasound field.
    Wang C; Cheng J
    J Acoust Soc Am; 2013 Aug; 134(2):1675-82. PubMed ID: 23927208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.