These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25564859)

  • 21. Dynamics of transition dipole moment orientation in representative fluorescent proteins.
    Khoroshyy P; Martinez-Seara H; Myšková J; Lazar J
    Phys Chem Chem Phys; 2023 Aug; 25(33):22117-22123. PubMed ID: 37560975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing dimerization and intraprotein fluorescence resonance energy transfer in a far-red fluorescent protein from the sea anemone Heteractis crispa.
    Lessard GA; Habuchi S; Werner JH; Goodwin PM; De Schryver F; Hofkens J; Cotlet M
    J Biomed Opt; 2008; 13(3):031212. PubMed ID: 18601536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers.
    Shi X; Basran J; Seward HE; Childs W; Bagshaw CR; Boxer SG
    Biochemistry; 2007 Dec; 46(50):14403-17. PubMed ID: 18027983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer.
    Karasawa S; Araki T; Nagai T; Mizuno H; Miyawaki A
    Biochem J; 2004 Jul; 381(Pt 1):307-12. PubMed ID: 15065984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Tandem Green-Red Heterodimeric Fluorescent Protein with High FRET Efficiency.
    Wiens MD; Shen Y; Li X; Salem MA; Smisdom N; Zhang W; Brown A; Campbell RE
    Chembiochem; 2016 Dec; 17(24):2361-2367. PubMed ID: 27781394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions.
    Alexandrov Y; Nikolic DS; Dunsby C; French PMW
    J Biophotonics; 2018 Jul; 11(7):e201700366. PubMed ID: 29582566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resonance enhancement of two-photon absorption in fluorescent proteins.
    Drobizhev M; Makarov NS; Hughes T; Rebane A
    J Phys Chem B; 2007 Dec; 111(50):14051-4. PubMed ID: 18027924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing fluorescent protein trios for 3-Way FRET imaging of protein interactions in living cells.
    Scott BL; Hoppe AD
    Sci Rep; 2015 Jul; 5():10270. PubMed ID: 26130463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission.
    Wu D; Guo WW; Liu XY; Cui G
    Chemphyschem; 2016 Aug; 17(15):2340-7. PubMed ID: 27128380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
    Zimmermann T; Rietdorf J; Girod A; Georget V; Pepperkok R
    FEBS Lett; 2002 Nov; 531(2):245-9. PubMed ID: 12417320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.
    Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB
    Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins.
    Ohashi T; Galiacy SD; Briscoe G; Erickson HP
    Protein Sci; 2007 Jul; 16(7):1429-38. PubMed ID: 17586775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins.
    Akrap N; Seidel T; Barisas BG
    Anal Biochem; 2010 Jul; 402(1):105-6. PubMed ID: 20347671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis insights for three FRET pairs of chemically unlinked two-molecule FRET cytometry.
    Ni Z; Gale A; Johnson MS; Sedger LM
    Cytometry A; 2022 May; 101(5):387-399. PubMed ID: 34935263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments.
    Kolossov VL; Spring BQ; Clegg RM; Henry JJ; Sokolowski A; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2011 Jun; 236(6):681-91. PubMed ID: 21606117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conversion of red fluorescent protein into a bright blue probe.
    Subach OM; Gundorov IS; Yoshimura M; Subach FV; Zhang J; Grüenwald D; Souslova EA; Chudakov DM; Verkhusha VV
    Chem Biol; 2008 Oct; 15(10):1116-24. PubMed ID: 18940671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving FRET dynamic range with bright green and red fluorescent proteins.
    Lam AJ; St-Pierre F; Gong Y; Marshall JD; Cranfill PJ; Baird MA; McKeown MR; Wiedenmann J; Davidson MW; Schnitzer MJ; Tsien RY; Lin MZ
    Nat Methods; 2012 Oct; 9(10):1005-12. PubMed ID: 22961245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.