These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25564859)

  • 41. Improving FRET dynamic range with bright green and red fluorescent proteins.
    Lam AJ; St-Pierre F; Gong Y; Marshall JD; Cranfill PJ; Baird MA; McKeown MR; Wiedenmann J; Davidson MW; Schnitzer MJ; Tsien RY; Lin MZ
    Nat Methods; 2012 Oct; 9(10):1005-12. PubMed ID: 22961245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Identification of the amino acid residues responsible for the reversible photoconversion of the monomeric red fluorescent protein TagRFP protein].
    Zhang L; Gurskaia NG; Kopantseva EE; Mudrik NN; Vagner LL; Luk'ianov KA; Chudakov DM
    Bioorg Khim; 2010; 36(2):187-92. PubMed ID: 20531476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measuring caspase activity by Förster resonance energy transfer.
    Rehm M; Parsons MJ; Bouchier-Hayes L
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.prot082560. PubMed ID: 25561624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Genetically encoded FRET-pair on the basis of terbium-binding peptide and red fluorescent protein].
    Arslanbaeva LR; Zherdeva VV; Ivashina TV; Vinokurov LM; Rusanov AL; Savitskiĭ AP
    Prikl Biokhim Mikrobiol; 2010; 46(2):166-71. PubMed ID: 20391759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.
    Subach OM; Malashkevich VN; Zencheck WD; Morozova KS; Piatkevich KD; Almo SC; Verkhusha VV
    Chem Biol; 2010 Apr; 17(4):333-41. PubMed ID: 20416505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay.
    Bayle V; Nussaume L; Bhat RA
    Plant Physiol; 2008 Sep; 148(1):51-60. PubMed ID: 18621983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins.
    Rizzo MA; Springer G; Segawa K; Zipfel WR; Piston DW
    Microsc Microanal; 2006 Jun; 12(3):238-54. PubMed ID: 17481360
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anomalous surplus energy transfer observed with multiple FRET acceptors.
    Koushik SV; Blank PS; Vogel SS
    PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New insights into the photophysics of DsRed by multiparameter spectroscopy on single proteins.
    Schleifenbaum F; Blum C; Elgass K; Subramaniam V; Meixner AJ
    J Phys Chem B; 2008 Jun; 112(25):7669-74. PubMed ID: 18528973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resonance energy transfer from lanthanide chelates to overlapping and nonoverlapping fluorescent protein acceptors.
    Vuojola J; Lamminmäki U; Soukka T
    Anal Chem; 2009 Jun; 81(12):5033-8. PubMed ID: 19438245
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bidirectional fluorescence resonance energy transfer (FRET) in mutated and chemically modified yellow fluorescent protein (YFP).
    Abraham BG; Tkachenko NV; Santala V; Lemmetyinen H; Karp M
    Bioconjug Chem; 2011 Feb; 22(2):227-34. PubMed ID: 21275395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlative Förster Resonance Electron Transfer-Proximity Ligation Assay (FRET-PLA) Technique for Studying Interactions Involving Membrane Proteins.
    Ivanusic D; Denner J; Bannert N
    Curr Protoc Protein Sci; 2016 Aug; 85():29.17.1-29.17.13. PubMed ID: 27479505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission.
    van Rheenen J; Langeslag M; Jalink K
    Biophys J; 2004 Apr; 86(4):2517-29. PubMed ID: 15041688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies.
    Currie M; Leopold H; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2017 Jun; 121(23):5688-5698. PubMed ID: 28520430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Failure of the IDA in FRET Systems at Close Inter-Dye Distances Is Moderated by Frequent Low κ(2) Values.
    Spiegel JD; Fulle S; Kleinschmidt M; Gohlke H; Marian CM
    J Phys Chem B; 2016 Sep; 120(34):8845-62. PubMed ID: 27490865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intramolecular Fluorescent Protein Association in a Class of Zinc FRET Sensors Leads to Increased Dynamic Range.
    Slocum JD; Palmer AE; Jimenez R
    J Phys Chem B; 2019 Apr; 123(14):3079-3085. PubMed ID: 30942588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling photophysical properties of the bacteriophytochrome-based fluorescent protein IFP1.4.
    Grigorenko BL; Polyakov IV; Nemukhin AV
    J Chem Phys; 2021 Feb; 154(6):065101. PubMed ID: 33588533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crystal structure of red fluorescent protein TagRFP-T reveals the mechanism of its superior photostability.
    Liu R; Liang QN; Du SQ; Hu XJ; Ding Y
    Biochem Biophys Res Commun; 2016 Aug; 477(2):229-34. PubMed ID: 27297107
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution.
    Quillin ML; Anstrom DM; Shu X; O'Leary S; Kallio K; Chudakov DM; Remington SJ
    Biochemistry; 2005 Apr; 44(15):5774-87. PubMed ID: 15823036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.