These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25564859)

  • 61. Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins.
    Alam R; Zylstra J; Fontaine DM; Branchini BR; Maye MM
    Nanoscale; 2013 Jun; 5(12):5303-6. PubMed ID: 23685756
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Photophysical properties of Cerulean and Venus fluorescent proteins.
    Sarkar P; Koushik SV; Vogel SS; Gryczynski I; Gryczynski Z
    J Biomed Opt; 2009; 14(3):034047. PubMed ID: 19566339
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.
    Detert Oude Weme RG; Kovács ÁT; de Jong SJ; Veening JW; Siebring J; Kuipers OP
    PLoS One; 2015; 10(4):e0123239. PubMed ID: 25886351
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.
    van der Krogt GN; Ogink J; Ponsioen B; Jalink K
    PLoS One; 2008 Apr; 3(4):e1916. PubMed ID: 18382687
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: the elusive blue intermediate revealed.
    Bravaya KB; Subach OM; Korovina N; Verkhusha VV; Krylov AI
    J Am Chem Soc; 2012 Feb; 134(5):2807-14. PubMed ID: 22239269
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computation of Förster Resonance Energy Transfer in Lipid Bilayer Membranes.
    Jacobi R; Hernández-Castillo D; Sinambela N; Bösking J; Pannwitz A; González L
    J Phys Chem A; 2022 Nov; 126(43):8070-8081. PubMed ID: 36260519
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space.
    Pham E; Chiang J; Li I; Shum W; Truong K
    Structure; 2007 May; 15(5):515-23. PubMed ID: 17502097
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo.
    Liu J; Ernst SA; Gladycheva SE; Lee YY; Lentz SI; Ho CS; Li Q; Stuenkel EL
    J Biol Chem; 2004 Dec; 279(53):55924-36. PubMed ID: 15489225
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Imaging of fluorescence anisotropy during photoswitching provides a simple readout for protein self-association.
    Ojha N; Rainey KH; Patterson GH
    Nat Commun; 2020 Jan; 11(1):21. PubMed ID: 31911590
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling photoabsorption of the asFP595 chromophore.
    Bravaya KB; Bochenkova AV; Granovsky AA; Savitsky AP; Nemukhin AV
    J Phys Chem A; 2008 Sep; 112(37):8804-10. PubMed ID: 18729441
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Direct observation of resonance tryptophan-to-chromophore energy transfer in visible fluorescent proteins.
    Visser NV; Borst JW; Hink MA; van Hoek A; Visser AJ
    Biophys Chem; 2005 Aug; 116(3):207-12. PubMed ID: 15893413
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantification of photosensitized singlet oxygen production by a fluorescent protein.
    Ragàs X; Cooper LP; White JH; Nonell S; Flors C
    Chemphyschem; 2011 Jan; 12(1):161-5. PubMed ID: 21226197
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.
    George Abraham B; Sarkisyan KS; Mishin AS; Santala V; Tkachenko NV; Karp M
    PLoS One; 2015; 10(8):e0134436. PubMed ID: 26237400
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photoswitchable cyan fluorescent protein as a FRET donor.
    Souslova EA; Chudakov DM
    Microsc Res Tech; 2006 Mar; 69(3):207-9. PubMed ID: 16538627
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.
    Wan S; Liu S; Zhao G; Chen M; Han K; Sun M
    Biophys Chem; 2007 Sep; 129(2-3):218-23. PubMed ID: 17604900
    [TBL] [Abstract][Full Text] [Related]  

  • 78. FRET-based screening assay using small-molecule photoluminescent probes in lysate of cells overexpressing RFP-fused protein kinases.
    Manoharan GB; Enkvist E; Kasari M; Viht K; Zenn M; Prinz A; Filhol O; Herberg FW; Uri A
    Anal Biochem; 2015 Jul; 481():10-7. PubMed ID: 25866074
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators.
    Kotera I; Iwasaki T; Imamura H; Noji H; Nagai T
    ACS Chem Biol; 2010 Feb; 5(2):215-22. PubMed ID: 20047338
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements.
    Seitz A; Terjung S; Zimmermann T; Pepperkok R
    J Biomed Opt; 2012 Jan; 17(1):011010. PubMed ID: 22352644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.