These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 2556494)

  • 1. Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording.
    Korn SJ; Horn R
    J Gen Physiol; 1989 Nov; 94(5):789-812. PubMed ID: 2556494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium and calcium channels in bovine chromaffin cells.
    Fenwick EM; Marty A; Neher E
    J Physiol; 1982 Oct; 331():599-635. PubMed ID: 6296372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A slow calcium-dependent chloride conductance in clonal anterior pituitary cells.
    Rogawski MA; Inoue K; Suzuki S; Barker JL
    J Neurophysiol; 1988 Jun; 59(6):1854-70. PubMed ID: 3404208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A [Na+]o-independent, pHo-dependent mechanism for reduction of intracellular [Ca2+] after influx through Ca2+ channels in mouse pituitary cells.
    Korn SJ; Horn R
    J Gen Physiol; 1991 Nov; 98(5):893-907. PubMed ID: 1662685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patch-clamp study of the calcium-dependent chloride current in AtT-20 pituitary cells.
    Korn SJ; Weight FF
    J Neurophysiol; 1987 Dec; 58(6):1431-51. PubMed ID: 2449518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taurodeoxycholate activates potassium and chloride conductances via an IP3-mediated release of calcium from intracellular stores in a colonic cell line (T84).
    Devor DC; Sekar MC; Frizzell RA; Duffey ME
    J Clin Invest; 1993 Nov; 92(5):2173-81. PubMed ID: 7693758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca(2+)-dependent Cl- channels in undifferentiated human colonic cells (HT-29). II. Regulation and rundown.
    Morris AP; Frizzell RA
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C977-85. PubMed ID: 7682780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of action potentials and Ca2+ influx by the Ca(2+)-dependent chloride current in mouse pituitary cells.
    Korn SJ; Bolden A; Horn R
    J Physiol; 1991 Aug; 439():423-37. PubMed ID: 1654415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries.
    Gordienko DV; Clausen C; Goligorsky MS
    Am J Physiol; 1994 Feb; 266(2 Pt 2):F325-41. PubMed ID: 8141333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gramicidin-perforated patch recording revealed the oscillatory nature of secretory Cl- movements in salivary acinar cells.
    Sugita M; Hirono C; Shiba Y
    J Gen Physiol; 2004 Jul; 124(1):59-69. PubMed ID: 15226364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect stimulation of Ca(2+)-activated Cl- current by Na+/Ca2+ exchange in rabbit portal vein smooth muscle.
    Leblanc N; Leung PM
    Am J Physiol; 1995 May; 268(5 Pt 2):H1906-17. PubMed ID: 7771540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic-receptor activation stimulates oscillations in K+ and Cl- currents which are acutely dependent on extracellular Ca2+ in avian salt gland cells.
    Martin SC; Shuttleworth TJ
    Pflugers Arch; 1994 Feb; 426(3-4):231-8. PubMed ID: 8183633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums.
    O'Leary ME; Horn R
    J Gen Physiol; 1994 Sep; 104(3):507-22. PubMed ID: 7807059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors.
    Maricq AV; Korenbrot JI
    Neuron; 1988 Aug; 1(6):503-15. PubMed ID: 2483100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Ca(2+)-activated Cl- currents in rabbit portal vein smooth muscle by an inhibitor of mitochondrial Ca2+ uptake.
    Greenwood IA; Helliwell RM; Large WA
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):53-64. PubMed ID: 9409471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent ultra-slow inactivation of calcium currents in rat anterior pituitary cells.
    Keller E; Nussinovitch I
    J Neurophysiol; 1996 Oct; 76(4):2157-68. PubMed ID: 8899591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K+ currents in rabbit esophageal muscularis mucosae.
    Akbarali HI
    Am J Physiol; 1993 May; 264(5 Pt 1):G1001-7. PubMed ID: 8498506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole cell current analyses of pancreatic acinar AR42J cells. I. Voltage- and Ca(2+)-activated currents.
    Kusano K; Gainer H
    Am J Physiol; 1991 May; 260(5 Pt 1):C934-48. PubMed ID: 1852108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na(+)-Ca2+ exchange current in latent pacemaker cells isolated from cat right atrium.
    Zhou Z; Lipsius SL
    J Physiol; 1993 Jul; 466():263-85. PubMed ID: 8410694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.