These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 25564956)
61. Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics. Pereira AT; Rodrigues CRS; Silva AC; Vidal R; Ventura JO; Gonçalves IC; Pereira AM ACS Biomater Sci Eng; 2023 Jun; 9(6):3712-3722. PubMed ID: 37256830 [TBL] [Abstract][Full Text] [Related]
62. Triboelectric Nanogenerators for Blue Energy Harvesting. Khan U; Kim SW ACS Nano; 2016 Jul; 10(7):6429-32. PubMed ID: 27408982 [TBL] [Abstract][Full Text] [Related]
63. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. Jing Q; Zhu G; Bai P; Xie Y; Chen J; Han RP; Wang ZL ACS Nano; 2014 Apr; 8(4):3836-42. PubMed ID: 24601567 [TBL] [Abstract][Full Text] [Related]
64. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. Hu Y; Yang J; Jing Q; Niu S; Wu W; Wang ZL ACS Nano; 2013 Nov; 7(11):10424-32. PubMed ID: 24168315 [TBL] [Abstract][Full Text] [Related]
65. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes. Van Ngoc H; Kang DJ Nanoscale; 2016 Mar; 8(9):5059-66. PubMed ID: 26865309 [TBL] [Abstract][Full Text] [Related]
66. Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance. Jirayupat C; Wongwiriyapan W; Kasamechonchung P; Wutikhun T; Tantisantisom K; Rayanasukha Y; Jiemsakul T; Tansarawiput C; Liangruksa M; Khanchaitit P; Horprathum M; Porntheeraphat S; Klamchuen A ACS Appl Mater Interfaces; 2018 Feb; 10(7):6433-6440. PubMed ID: 29368920 [TBL] [Abstract][Full Text] [Related]
67. On the mechanism and optimization of triboelectric nanogenerators. Zhang A; Liu W; Zhang Y Nanotechnology; 2015 Oct; 26(42):425401. PubMed ID: 26422792 [TBL] [Abstract][Full Text] [Related]
68. Coplanar induction enabled by asymmetric permittivity of dielectric materials for mechanical energy conversion. Zhao XJ; Zhu G; Wang ZL ACS Appl Mater Interfaces; 2015 Mar; 7(11):6025-9. PubMed ID: 25734360 [TBL] [Abstract][Full Text] [Related]
69. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. Yang J; Chen J; Liu Y; Yang W; Su Y; Wang ZL ACS Nano; 2014 Mar; 8(3):2649-57. PubMed ID: 24524252 [TBL] [Abstract][Full Text] [Related]
70. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. Lin L; Xie Y; Wang S; Wu W; Niu S; Wen X; Wang ZL ACS Nano; 2013 Sep; 7(9):8266-74. PubMed ID: 23957827 [TBL] [Abstract][Full Text] [Related]
71. Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. Yang Y; Zhang H; Zhong X; Yi F; Yu R; Zhang Y; Wang ZL ACS Appl Mater Interfaces; 2014 Mar; 6(5):3680-8. PubMed ID: 24568361 [TBL] [Abstract][Full Text] [Related]
72. Elastic Droplet-Based Magnetoelectric Generator for High-performance Energy Collection. Zhang Y; Zhang J; Liu J; Chen Y; Zhou Y; Zhao Y; Zheng H; Liu X ACS Appl Mater Interfaces; 2024 Jul; 16(26):33494-33503. PubMed ID: 38889354 [TBL] [Abstract][Full Text] [Related]
73. A High Current Density Direct-Current Generator Based on a Moving van der Waals Schottky Diode. Lin S; Lu Y; Feng S; Hao Z; Yan Y Adv Mater; 2019 Feb; 31(7):e1804398. PubMed ID: 30556216 [TBL] [Abstract][Full Text] [Related]
74. A Low Input Current and Wide Conversion Ratio Buck Regulator with 75% Efficiency for High-Voltage Triboelectric Nanogenerators. Luo LC; Bao DC; Yu WQ; Zhang ZH; Ren TL Sci Rep; 2016 Jan; 6():19246. PubMed ID: 26781881 [TBL] [Abstract][Full Text] [Related]
75. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. Bai P; Zhu G; Lin ZH; Jing Q; Chen J; Zhang G; Ma J; Wang ZL ACS Nano; 2013 Apr; 7(4):3713-9. PubMed ID: 23484470 [TBL] [Abstract][Full Text] [Related]
76. Bionic Fish-Shaped Triboelectric-Electromagnetic Hybrid Generator via a Two-Stage Swing Mechanism for Water Flow Energy Harvesting and Condition Monitoring. Gao Q; Jing Z; Sun Y; Zhang S; Gu C; Ma L; Li H; Wen J; Cheng X; Cheng T ACS Appl Mater Interfaces; 2024 Jan; 16(1):569-575. PubMed ID: 38108825 [TBL] [Abstract][Full Text] [Related]
77. A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators. Shin SH; Kwon YH; Lee MH; Jung JY; Seol JH; Nah J Nanoscale; 2016 Jan; 8(3):1314-21. PubMed ID: 26681551 [TBL] [Abstract][Full Text] [Related]
78. r-Shaped hybrid nanogenerator with enhanced piezoelectricity. Han M; Zhang XS; Meng B; Liu W; Tang W; Sun X; Wang W; Zhang H ACS Nano; 2013 Oct; 7(10):8554-60. PubMed ID: 24032720 [TBL] [Abstract][Full Text] [Related]
79. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. Chen J; Yang J; Li Z; Fan X; Zi Y; Jing Q; Guo H; Wen Z; Pradel KC; Niu S; Wang ZL ACS Nano; 2015 Mar; 9(3):3324-31. PubMed ID: 25719956 [TBL] [Abstract][Full Text] [Related]
80. A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement. Li XH; Han CB; Jiang T; Zhang C; Wang ZL Nanotechnology; 2016 Feb; 27(8):085401. PubMed ID: 26808345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]