These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25565003)

  • 1. Molecular hot electroluminescence due to strongly enhanced spontaneous emission rates in a plasmonic nanocavity.
    Chen G; Li XG; Zhang ZY; Dong ZC
    Nanoscale; 2015 Feb; 7(6):2442-9. PubMed ID: 25565003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signatures of Plexitonic States in Molecular Electroluminescence.
    Bergfield JP; Hendrickson JR
    Sci Rep; 2018 Feb; 8(1):2314. PubMed ID: 29396443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling.
    Wang X; Braun K; Zhang D; Peisert H; Adler H; Chassé T; Meixner AJ
    ACS Nano; 2015 Aug; 9(8):8176-83. PubMed ID: 26200215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances.
    Cui X; Qin F; Lai Y; Wang H; Shao L; Chen H; Wang J; Lin HQ
    ACS Nano; 2018 Dec; 12(12):12541-12550. PubMed ID: 30462918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density-matrix approach for the electroluminescence of molecules in a scanning tunneling microscope.
    Tian G; Liu JC; Luo Y
    Phys Rev Lett; 2011 Apr; 106(17):177401. PubMed ID: 21635061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces.
    Pacheco-Peña V; Navarro-Cía M
    Nanoscale; 2018 Jul; 10(28):13607-13616. PubMed ID: 29978869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter.
    Martín-Jiménez A; Jover Ó; Lauwaet K; Granados D; Miranda R; Otero R
    Nano Lett; 2022 Dec; 22(23):9283-9289. PubMed ID: 36441511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons.
    Braun K; Wang X; Kern AM; Adler H; Peisert H; Chassé T; Zhang D; Meixner AJ
    Beilstein J Nanotechnol; 2015; 6():1100-6. PubMed ID: 26171286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM.
    Martín-Jiménez A; Fernández-Domínguez AI; Lauwaet K; Granados D; Miranda R; García-Vidal FJ; Otero R
    Nat Commun; 2020 Feb; 11(1):1021. PubMed ID: 32094339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Assisted Resonant Electron Tunneling in a Scanning Tunneling Microscope Junction.
    Liu S; Wolf M; Kumagai T
    Phys Rev Lett; 2018 Nov; 121(22):226802. PubMed ID: 30547648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.
    Yu A; Li S; Wang H; Chen S; Wu R; Ho W
    Nano Lett; 2018 May; 18(5):3076-3080. PubMed ID: 29660286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimodal exciton-plasmon light sources controlled by local charge carrier injection.
    Merino P; Rosławska A; Große C; Leon CC; Kuhnke K; Kern K
    Sci Adv; 2018 May; 4(5):eaap8349. PubMed ID: 29806018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence.
    Zhu SE; Kuang YM; Geng F; Zhu JZ; Wang CZ; Yu YJ; Luo Y; Xiao Y; Liu KQ; Meng QS; Zhang L; Jiang S; Zhang Y; Wang GW; Dong ZC; Hou JG
    J Am Chem Soc; 2013 Oct; 135(42):15794-800. PubMed ID: 24066644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Vibronic Transition Rates by Resonant Single-Molecule-Nanoantenna Coupling.
    Saemisch L; Liebel M; van Hulst NF
    Nano Lett; 2020 Jun; 20(6):4537-4542. PubMed ID: 32401523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasmall Plasmonic Single Nanoparticle Light Source Driven by a Graphene Tunnel Junction.
    Namgung S; Mohr DA; Yoo D; Bharadwaj P; Koester SJ; Oh SH
    ACS Nano; 2018 Mar; 12(3):2780-2788. PubMed ID: 29498820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions.
    Cui L; Zhu Y; Abbasi M; Ahmadivand A; Gerislioglu B; Nordlander P; Natelson D
    Nano Lett; 2020 Aug; 20(8):6067-6075. PubMed ID: 32568541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
    Hoang TB; Akselrod GM; Mikkelsen MH
    Nano Lett; 2016 Jan; 16(1):270-5. PubMed ID: 26606001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Sharp C
    Nanotechnology; 2018 Jan; 29(1):015402. PubMed ID: 29130899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of an atomistic protrusion at the tip apex on enhancing molecular emission in tunnel junctions: A theoretical study.
    Zhu JZ; Chen G; Ijaz T; Li XG; Dong ZC
    J Chem Phys; 2021 Jun; 154(21):214706. PubMed ID: 34240995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.