These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 2556507)
1. Identification of morphine- and cyclic AMP-regulated phosphoproteins (MARPPs) in the locus coeruleus and other regions of rat brain: regulation by acute and chronic morphine. Guitart X; Nestler EJ J Neurosci; 1989 Dec; 9(12):4371-87. PubMed ID: 2556507 [TBL] [Abstract][Full Text] [Related]
2. Identification of MARPP-58, a morphine- and cyclic AMP-regulated phosphoprotein of 58 kDa, as tyrosine hydroxylase: evidence for regulation of its expression by chronic morphine in the rat locus coeruleus. Guitart X; Hayward M; Nisenbaum LK; Beitner-Johnson DB; Haycock JW; Nestler EJ J Neurosci; 1990 Aug; 10(8):2649-59. PubMed ID: 1974920 [TBL] [Abstract][Full Text] [Related]
3. Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. Duman RS; Tallman JF; Nestler EJ J Pharmacol Exp Ther; 1988 Sep; 246(3):1033-9. PubMed ID: 2843624 [TBL] [Abstract][Full Text] [Related]
4. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Nestler EJ Brain Res; 2016 Aug; 1645():71-4. PubMed ID: 26740398 [TBL] [Abstract][Full Text] [Related]
5. Chronic morphine treatment increases cyclic AMP-dependent protein kinase activity in the rat locus coeruleus. Nestler EJ; Tallman JF Mol Pharmacol; 1988 Feb; 33(2):127-32. PubMed ID: 3340078 [TBL] [Abstract][Full Text] [Related]
6. Regulation by chronic clonidine of adenylate cyclase and cyclic AMP-dependent protein kinase in the rat locus coeruleus. Nestler EJ; Terwilliger R; Beitner D Life Sci; 1989; 45(12):1073-80. PubMed ID: 2507846 [TBL] [Abstract][Full Text] [Related]
7. Regulation of G proteins by chronic morphine in the rat locus coeruleus. Nestler EJ; Erdos JJ; Terwilliger R; Duman RS; Tallman JF Brain Res; 1989 Jan; 476(2):230-9. PubMed ID: 2495149 [TBL] [Abstract][Full Text] [Related]
8. Identification of MARPP (14-20), morphine- and cyclic AMP-regulated phosphoproteins of 14-20 kDa, as myelin basic proteins: evidence for their acute and chronic regulation by morphine in rat brain. Guitart X; Nestler EJ Brain Res; 1990 May; 516(1):57-65. PubMed ID: 1694708 [TBL] [Abstract][Full Text] [Related]
9. Lewis and Fischer rat strains display differences in biochemical, electrophysiological and behavioral parameters: studies in the nucleus accumbens and locus coeruleus of drug naive and morphine-treated animals. Guitart X; Kogan JH; Berhow M; Terwilliger RZ; Aghajanian GK; Nestler EJ Brain Res; 1993 May; 611(1):7-17. PubMed ID: 8518951 [TBL] [Abstract][Full Text] [Related]
10. CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. Lane-Ladd SB; Pineda J; Boundy VA; Pfeuffer T; Krupinski J; Aghajanian GK; Nestler EJ J Neurosci; 1997 Oct; 17(20):7890-901. PubMed ID: 9315909 [TBL] [Abstract][Full Text] [Related]
11. A novel action of morphine in the rat locus coeruleus: persistent decrease in adenylate cyclase. Beitner DB; Duman RS; Nestler EJ Mol Pharmacol; 1989 May; 35(5):559-64. PubMed ID: 2498635 [TBL] [Abstract][Full Text] [Related]
12. Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. Beitner-Johnson D; Guitart X; Nestler EJ J Neurochem; 1993 Nov; 61(5):1766-73. PubMed ID: 8228992 [TBL] [Abstract][Full Text] [Related]
13. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Terwilliger RZ; Beitner-Johnson D; Sevarino KA; Crain SM; Nestler EJ Brain Res; 1991 May; 548(1-2):100-10. PubMed ID: 1651140 [TBL] [Abstract][Full Text] [Related]
14. Essential role of the cAMP-cAMP response-element binding protein pathway in opiate-induced homeostatic adaptations of locus coeruleus neurons. Cao JL; Vialou VF; Lobo MK; Robison AJ; Neve RL; Cooper DC; Nestler EJ; Han MH Proc Natl Acad Sci U S A; 2010 Sep; 107(39):17011-6. PubMed ID: 20837544 [TBL] [Abstract][Full Text] [Related]
15. Local opiate withdrawal in locus coeruleus neurons in vitro. Ivanov A; Aston-Jones G J Neurophysiol; 2001 Jun; 85(6):2388-97. PubMed ID: 11387385 [TBL] [Abstract][Full Text] [Related]
16. Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. Rasmussen K; Beitner-Johnson DB; Krystal JH; Aghajanian GK; Nestler EJ J Neurosci; 1990 Jul; 10(7):2308-17. PubMed ID: 2115910 [TBL] [Abstract][Full Text] [Related]
17. Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus. Guitart X; Thompson MA; Mirante CK; Greenberg ME; Nestler EJ J Neurochem; 1992 Mar; 58(3):1168-71. PubMed ID: 1531356 [TBL] [Abstract][Full Text] [Related]
18. Induction of the c-fos proto-oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain. Hayward MD; Duman RS; Nestler EJ Brain Res; 1990 Aug; 525(2):256-66. PubMed ID: 1701330 [TBL] [Abstract][Full Text] [Related]
19. Chronic naltrexone increases opiate binding in brain and produces supersensitivity to morphine in the locus coeruleus of the rat. Bardo MT; Bhatnagar RK; Gebhart GF Brain Res; 1983 Dec; 289(1-2):223-34. PubMed ID: 6318895 [TBL] [Abstract][Full Text] [Related]
20. Modulation of opiate responses in brain noradrenergic neurons by the cyclic AMP cascade: changes with chronic morphine. Shiekhattar R; Aston-Jones G Neuroscience; 1993 Dec; 57(4):879-85. PubMed ID: 8309548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]