These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25565112)

  • 1. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.
    Chen H; Zou Q; Liang Z; Liu H; Li Q; Lu YC
    Nat Commun; 2015 Jan; 6():5877. PubMed ID: 25565112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategic approach to recharging lithium-sulphur batteries for long cycle life.
    Su YS; Fu Y; Cochell T; Manthiram A
    Nat Commun; 2013; 4():2985. PubMed ID: 24346483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries.
    Pang Q; Kundu D; Cuisinier M; Nazar LF
    Nat Commun; 2014 Aug; 5():4759. PubMed ID: 25154399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries.
    Xi K; Kidambi PR; Chen R; Gao C; Peng X; Ducati C; Hofmann S; Kumar RV
    Nanoscale; 2014 Jun; 6(11):5746-53. PubMed ID: 24658177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.
    Kim KR; Lee KS; Ahn CY; Yu SH; Sung YE
    Sci Rep; 2016 Aug; 6():32433. PubMed ID: 27573528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge.
    Zhou G; Paek E; Hwang GS; Manthiram A
    Nat Commun; 2015 Jul; 6():7760. PubMed ID: 26182892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide.
    Wang Z; Dong Y; Li H; Zhao Z; Wu HB; Hao C; Liu S; Qiu J; Lou XW
    Nat Commun; 2014 Sep; 5():5002. PubMed ID: 25255431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries.
    Helen M; Reddy MA; Diemant T; Golla-Schindler U; Behm RJ; Kaiser U; Fichtner M
    Sci Rep; 2015 Jul; 5():12146. PubMed ID: 26173723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TiO₂ Nanosheet-Redox Graphene Oxide/Sulphur Cathode for High-Performance Lithium-Sulphur Batteries.
    Hong S; Han Y; Zhang K; Wang M; Cui N; Du X; Li Q; Huang Y; Jiang F; Xie K
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1715-1722. PubMed ID: 31492335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mo2C/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life.
    Kwak WJ; Lau KC; Shin CD; Amine K; Curtiss LA; Sun YK
    ACS Nano; 2015 Apr; 9(4):4129-37. PubMed ID: 25801846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures.
    Huang C; Xiao J; Shao Y; Zheng J; Bennett WD; Lu D; Saraf LV; Engelhard M; Ji L; Zhang J; Li X; Graff GL; Liu J
    Nat Commun; 2014; 5():3015. PubMed ID: 24402522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.
    Luo C; Xu Y; Zhu Y; Liu Y; Zheng S; Liu Y; Langrock A; Wang C
    ACS Nano; 2013 Sep; 7(9):8003-10. PubMed ID: 23944942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries.
    Wei Seh Z; Li W; Cha JJ; Zheng G; Yang Y; McDowell MT; Hsu PC; Cui Y
    Nat Commun; 2013; 4():1331. PubMed ID: 23299881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer.
    Su YS; Manthiram A
    Nat Commun; 2012; 3():1166. PubMed ID: 23132016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency.
    Gao X; Li J; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4154-9. PubMed ID: 24555988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.
    Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.