These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25565131)

  • 1. Regenerated soleus muscle shows reduced creatine kinase efflux after contractile activity in vitro.
    Baltusnikas J; Kilikevicius A; Venckunas T; Fokin A; Lionikas A; Ratkevicius A
    Appl Physiol Nutr Metab; 2015 Feb; 40(2):129-33. PubMed ID: 25565131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efflux of creatine kinase from isolated soleus muscle depends on age, sex and type of exercise in mice.
    Baltusnikas J; Venckunas T; Kilikevicius A; Fokin A; Ratkevicius A
    J Sports Sci Med; 2015 Jun; 14(2):379-85. PubMed ID: 25983588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.
    Baltusnikas J; Kilikevicius A; Venckunas T; Fokin A; Bünger L; Lionikas A; Ratkevicius A
    Appl Physiol Nutr Metab; 2015 Aug; 40(8):817-21. PubMed ID: 26201857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of creatine kinase and prostaglandin E2 from regenerating skeletal muscle fibers.
    McArdle A; Edwards RH; Jackson MJ
    J Appl Physiol (1985); 1994 Mar; 76(3):1274-8. PubMed ID: 8005873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle fatigue experienced during maximal eccentric exercise is predictive of the plasma creatine kinase (CK) response.
    Hody S; Rogister B; Leprince P; Wang F; Croisier JL
    Scand J Med Sci Sports; 2013 Aug; 23(4):501-7. PubMed ID: 22107069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term immobilization after eccentric exercise. Part II: creatine kinase and myoglobin.
    Sayers SP; Clarkson PM
    Med Sci Sports Exerc; 2003 May; 35(5):762-8. PubMed ID: 12750585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle.
    Warren GL; Hayes DA; Lowe DA; Armstrong RB
    J Physiol; 1993 May; 464():457-75. PubMed ID: 8229813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The repeated bout effect: is the blunted creatine kinase response an effect of an altered enzyme inactivation kinetic?
    Behringer M; Montag J; Kilian Y; Mccourt M; Mester J
    J Sports Med Phys Fitness; 2015 Dec; 55(12):1431-7. PubMed ID: 25286884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creatine kinase release from regenerated muscles after eccentric contractions in rats.
    Sakamoto K; Nosaka K; Shimegi S; Ohmori H; Katsuta S
    Eur J Appl Physiol Occup Physiol; 1996; 73(6):516-20. PubMed ID: 8817121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of knee extensor force using percutaneous electrical myostimulation during eccentric actions: effects on indices of muscle damage in humans.
    Child RB; Brown SJ; Day SH; Saxton JM; Donnelly AE
    Int J Sports Med; 1998 Oct; 19(7):468-73. PubMed ID: 9839843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indices of skeletal muscle damage and connective tissue breakdown following eccentric muscle contractions.
    Brown SJ; Child RB; Day SH; Donnelly AE
    Eur J Appl Physiol Occup Physiol; 1997; 75(4):369-74. PubMed ID: 9134370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise-induced skeletal muscle damage and adaptation following repeated bouts of eccentric muscle contractions.
    Brown SJ; Child RB; Day SH; Donnelly AE
    J Sports Sci; 1997 Apr; 15(2):215-22. PubMed ID: 9258852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light concentric exercise and heavy eccentric muscle loading: effects on CK, MRI and markers of inflammation.
    Sorichter S; Koller A; Haid C; Wicke K; Judmaier W; Werner P; Raas E
    Int J Sports Med; 1995 Jul; 16(5):288-92. PubMed ID: 7558524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in muscle damage after eccentric exercise and the repeated bout effect.
    Chen TC
    Res Q Exerc Sport; 2006 Sep; 77(3):362-71. PubMed ID: 17020080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A contralateral repeated bout effect attenuates induction of NF-κB DNA binding following eccentric exercise.
    Xin L; Hyldahl RD; Chipkin SR; Clarkson PM
    J Appl Physiol (1985); 2014 Jun; 116(11):1473-80. PubMed ID: 23950163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated bout effect after maximal eccentric exercise.
    Howatson G; Van Someren K; Hortobágyi T
    Int J Sports Med; 2007 Jul; 28(7):557-63. PubMed ID: 17373600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles.
    Dartnall TJ; Nordstrom MA; Semmler JG
    J Neurophysiol; 2011 Mar; 105(3):1225-35. PubMed ID: 21248060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise?
    Cochrane DJ; Booker HR; Mundel T; Barnes MJ
    Int J Sports Med; 2013 Nov; 34(11):969-74. PubMed ID: 23606340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise.
    Eston RG; Finney S; Baker S; Baltzopoulos V
    J Sports Sci; 1996 Aug; 14(4):291-9. PubMed ID: 8887208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.