BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25565148)

  • 1. Identification of polybrominated diphenyl ether metabolites based on calculated boiling points from COSMO-RS, experimental retention times, and mass spectral fragmentation patterns.
    Simpson S; Gross MS; Olson JR; Zurek E; Aga DS
    Anal Chem; 2015 Feb; 87(4):2299-305. PubMed ID: 25565148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary role of cytochrome P450 2B6 in the oxidative metabolism of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) to hydroxylated BDEs.
    Gross MS; Butryn DM; McGarrigle BP; Aga DS; Olson JR
    Chem Res Toxicol; 2015 Apr; 28(4):672-81. PubMed ID: 25629761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved.
    Erratico CA; Szeitz A; Bandiera SM
    Chem Res Toxicol; 2013 May; 26(5):721-31. PubMed ID: 23537005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro metabolism of BDE-47, BDE-99, and α-, β-, γ-HBCD isomers by chicken liver microsomes.
    Zheng X; Erratico C; Abdallah MA; Negreira N; Luo X; Mai B; Covaci A
    Environ Res; 2015 Nov; 143(Pt A):221-8. PubMed ID: 26505652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants.
    Zheng X; Erratico C; Luo X; Mai B; Covaci A
    Chemosphere; 2016 May; 151():30-6. PubMed ID: 26923239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic microsomal metabolism of BDE-47 and BDE-99 by lesser snow geese and Japanese quail.
    Krieger LK; Szeitz A; Bandiera SM
    Chemosphere; 2017 Sep; 182():559-566. PubMed ID: 28525869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes.
    Erratico CA; Moffatt SC; Bandiera SM
    Toxicol Sci; 2011 Sep; 123(1):37-47. PubMed ID: 21673328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and tentative identification of novel polybrominated diphenyl ether metabolites in human blood.
    Rydén A; Nestor G; Jakobsson K; Marsh G
    Chemosphere; 2012 Aug; 88(10):1227-34. PubMed ID: 22572169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant.
    Sun J; Liu J; Yu M; Wang C; Sun Y; Zhang A; Wang T; Lei Z; Jiang G
    Environ Sci Technol; 2013 Apr; 47(8):3701-7. PubMed ID: 23510101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hydroxylated metabolites in 2,2',4,4'-tetrabromodiphenyl ether exposed rats.
    Marsh G; Athanasiadou M; Athanassiadis I; Sandholm A
    Chemosphere; 2006 Apr; 63(4):690-7. PubMed ID: 16213553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of BDE-47 to potentially toxic metabolites is predominantly mediated by human CYP2B6.
    Feo ML; Gross MS; McGarrigle BP; Eljarrat E; Barceló D; Aga DS; Olson JR
    Environ Health Perspect; 2013 Apr; 121(4):440-6. PubMed ID: 23249762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative metabolism of BDE-99 by human liver microsomes: predominant role of CYP2B6.
    Erratico CA; Szeitz A; Bandiera SM
    Toxicol Sci; 2012 Oct; 129(2):280-92. PubMed ID: 22738989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a novel in vitro assay using ultra performance liquid chromatography-mass spectrometry (UPLC/MS) to detect and quantify hydroxylated metabolites of BDE-99 in rat liver microsomes.
    Erratico CA; Szeitz A; Bandiera SM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jun; 878(19):1562-8. PubMed ID: 20451473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of polybrominated diphenyl ethers and hydroxylated metabolites in paired human serum and milk in relation to CYP2B6 genotype.
    Butryn DM; Chi LH; Gross MS; McGarrigle B; Schecter A; Olson JR; Aga DS
    J Hazard Mater; 2020 Mar; 386():121904. PubMed ID: 31901712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bromination of 2-methoxydiphenyl ether to an average of tetrabrominated 2-methoxydiphenyl ethers.
    Vetter W; Kirres J; Bendig P
    Chemosphere; 2011 Aug; 84(8):1117-24. PubMed ID: 21546057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure prediction of methyoxy-polybrominated diphenyl ethers (MeO-PBDEs) through GC-MS analysis of their corresponding PBDEs.
    Yu M; Liu J; Wang T; Zhang A; Wang Y; Zhou Q; Jiang G
    Talanta; 2016 May; 152():9-14. PubMed ID: 26992489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of the parent compound and its metabolites in serum, urine, and feces of mice administered 2,2',4,4'-tetrabromodiphenyl ether.
    Xu H; Feng C; Cao Y; Lu Y; Xi J; Ji J; Lu D; Zhang XY; Luan Y
    Chemosphere; 2019 Jun; 225():217-225. PubMed ID: 30877916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of hepatic biotransformation of polybrominated diphenyl ethers in the polar bear (Ursus maritimus).
    Krieger LK; Szeitz A; Bandiera SM
    Chemosphere; 2016 Mar; 146():555-64. PubMed ID: 26745384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of polybrominated diphenyl ethers and metabolites in mouse plasma after exposure to a commercial pentabromodiphenyl ether mixture.
    Qiu X; Mercado-Feliciano M; Bigsby RM; Hites RA
    Environ Health Perspect; 2007 Jul; 115(7):1052-8. PubMed ID: 17637922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation kinetics and pathways of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its hydroxylated and methoxylated derivatives (6-OH-BDE-47 and 6-MeO-BDE-47) in earthworms (Eisenia fetida).
    Xu X; Wang G; Li Y; Zhang Y
    Sci Total Environ; 2023 Jan; 855():158934. PubMed ID: 36152865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.