BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25565162)

  • 1. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis.
    Ferrari AR; Lee M; Fraaije MW
    Biotechnol Bioeng; 2015 Jun; 112(6):1074-80. PubMed ID: 25565162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis.
    Heuts DP; Janssen DB; Fraaije MW
    FEBS Lett; 2007 Oct; 581(25):4905-9. PubMed ID: 17900572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the structure and substrate scope of chitooligosaccharide oxidase reveals high affinity for C2-modified glucosamines.
    Savino S; Jensen S; Terwisscha van Scheltinga A; Fraaije MW
    FEBS Lett; 2020 Sep; 594(17):2819-2828. PubMed ID: 32491191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum.
    Heuts DP; Winter RT; Damsma GE; Janssen DB; Fraaije MW
    Biochem J; 2008 Jul; 413(1):175-83. PubMed ID: 18352858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl, 8alpha-N1-histidyl FAD.
    Huang CH; Lai WL; Lee MH; Chen CJ; Vasella A; Tsai YC; Liaw SH
    J Biol Chem; 2005 Nov; 280(46):38831-8. PubMed ID: 16154992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicological studies on Lactose Oxidase from Microdochium nivale expressed in Fusarium venenatum.
    Ahmad SK; Brinch DS; Friis EP; Pedersen PB
    Regul Toxicol Pharmacol; 2004 Jun; 39(3):256-70. PubMed ID: 15135207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of kinetics and thermostability of Acremonium strictum glucooligosaccharide oxidase.
    Fan Z; Oguntimein GB; Reilly PJ
    Biotechnol Bioeng; 2000 Apr; 68(2):231-7. PubMed ID: 10712739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.
    Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K
    Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of possible catalytic residues of cellobiose 2-epimerase from Ruminococcus albus.
    Ito S; Hamada S; Ito H; Matsui H; Ozawa T; Taguchi H; Ito S
    Biotechnol Lett; 2009 Jul; 31(7):1065-71. PubMed ID: 19330485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Determinants of N-Acetylglucosamine Recognition and Turnover by N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside Deacetylase (MshB).
    Huang X; Hernick M
    Biochemistry; 2015 Jun; 54(24):3784-90. PubMed ID: 26024468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases.
    Cleveland ME; Mathieu Y; Ribeaucourt D; Haon M; Mulyk P; Hein JE; Lafond M; Berrin JG; Brumer H
    Cell Mol Life Sci; 2021 Dec; 78(24):8187-8208. PubMed ID: 34738149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa.
    Ludwig R; Salamon A; Varga J; Zámocky M; Peterbauer CK; Kulbe KD; Haltrich D
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):213-22. PubMed ID: 14666391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Ruminococcus albus cellobiose 2-epimerase: structural insights into epimerization of unmodified sugar.
    Fujiwara T; Saburi W; Inoue S; Mori H; Matsui H; Tanaka I; Yao M
    FEBS Lett; 2013 Apr; 587(7):840-6. PubMed ID: 23462136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase.
    Desriani ; Ferri S; Sode K
    Biochem Biophys Res Commun; 2010 Jan; 391(2):1246-50. PubMed ID: 20120044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum.
    Foumani M; Vuong TV; Master ER
    Biotechnol Bioeng; 2011 Oct; 108(10):2261-9. PubMed ID: 21455933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Various properties of galactose oxidase from Fusarium graminearum IMV-F-1060 immobilized on aminoorganosilochromes].
    Kondakova LV; Ianishpol'skiĭ VV; Tertykh VA; Buglova TT; Koroleva OV
    Ukr Biokhim Zh (1978); 1984; 56(4):394-8. PubMed ID: 6093302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H
    Vuong TV; Foumani M; MacCormick B; Kwan R; Master ER
    Sci Rep; 2016 Nov; 6():37356. PubMed ID: 27869125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of novel oligosaccharide oxidase by wheat bran solid-state fermentation.
    Lin SF; Hu HM; Inukal T; Tsai YC
    Biotechnol Adv; 1993; 11(3):417-27. PubMed ID: 14545666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.