These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
544 related articles for article (PubMed ID: 25565400)
1. Decarbamoyl mitomycin C (DMC) activates p53-independent ataxia telangiectasia and rad3 related protein (ATR) chromatin eviction. Xiao G; Kue P; Bhosle R; Bargonetti J Cell Cycle; 2015; 14(5):744-54. PubMed ID: 25565400 [TBL] [Abstract][Full Text] [Related]
2. DNA adducts of decarbamoyl mitomycin C efficiently kill cells without wild-type p53 resulting from proteasome-mediated degradation of checkpoint protein 1. Boamah EK; Brekman A; Tomasz M; Myeku N; Figueiredo-Pereira M; Hunter S; Meyer J; Bhosle RC; Bargonetti J Chem Res Toxicol; 2010 Jul; 23(7):1151-62. PubMed ID: 20536192 [TBL] [Abstract][Full Text] [Related]
3. Activation of the S phase DNA damage checkpoint by mitomycin C. Mladenov E; Tsaneva I; Anachkova B J Cell Physiol; 2007 May; 211(2):468-76. PubMed ID: 17167777 [TBL] [Abstract][Full Text] [Related]
4. S-phase sensing of DNA-protein crosslinks triggers TopBP1-independent ATR activation and p53-mediated cell death by formaldehyde. Wong VC; Cash HL; Morse JL; Lu S; Zhitkovich A Cell Cycle; 2012 Jul; 11(13):2526-37. PubMed ID: 22722496 [TBL] [Abstract][Full Text] [Related]
5. ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells. Sirbu BM; Lachmayer SJ; Wülfing V; Marten LM; Clarkson KE; Lee LW; Gheorghiu L; Zou L; Powell SN; Dahm-Daphi J; Willers H PLoS One; 2011; 6(8):e23053. PubMed ID: 21857991 [TBL] [Abstract][Full Text] [Related]
6. Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation. Cheng SY; Seo J; Huang BT; Napolitano T; Champeil E Int J Oncol; 2016 Nov; 49(5):1815-1824. PubMed ID: 27666201 [TBL] [Abstract][Full Text] [Related]
7. Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Das KC; Dashnamoorthy R Am J Physiol Lung Cell Mol Physiol; 2004 Jan; 286(1):L87-97. PubMed ID: 12959929 [TBL] [Abstract][Full Text] [Related]
8. Mitomycin-DNA adducts induce p53-dependent and p53-independent cell death pathways. Boamah EK; White DE; Talbott KE; Arva NC; Berman D; Tomasz M; Bargonetti J ACS Chem Biol; 2007 Jun; 2(6):399-407. PubMed ID: 17530733 [TBL] [Abstract][Full Text] [Related]
9. Prevention of DNA Replication Stress by CHK1 Leads to Chemoresistance Despite a DNA Repair Defect in Homologous Recombination in Breast Cancer. Meyer F; Becker S; Classen S; Parplys AC; Mansour WY; Riepen B; Timm S; Ruebe C; Jasin M; Wikman H; Petersen C; Rothkamm K; Borgmann K Cells; 2020 Jan; 9(1):. PubMed ID: 31963582 [TBL] [Abstract][Full Text] [Related]
10. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. Lindsey-Boltz LA; Kemp MG; Capp C; Sancar A Cell Cycle; 2015; 14(1):99-108. PubMed ID: 25602520 [TBL] [Abstract][Full Text] [Related]
11. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Willis J; Patel Y; Lentz BL; Yan S Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10592-7. PubMed ID: 23754435 [TBL] [Abstract][Full Text] [Related]
12. Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control. Demidova AR; Aau MY; Zhuang L; Yu Q J Biol Chem; 2009 Feb; 284(7):4132-9. PubMed ID: 19060337 [TBL] [Abstract][Full Text] [Related]
13. The dispersal of replication proteins after Etoposide treatment requires the cooperation of Nbs1 with the ataxia telangiectasia Rad3-related/Chk1 pathway. Rossi R; Lidonnici MR; Soza S; Biamonti G; Montecucco A Cancer Res; 2006 Feb; 66(3):1675-83. PubMed ID: 16452227 [TBL] [Abstract][Full Text] [Related]
14. Study of the DNA damage checkpoint using Xenopus egg extracts. Willis J; DeStephanis D; Patel Y; Gowda V; Yan S J Vis Exp; 2012 Nov; (69):e4449. PubMed ID: 23149695 [TBL] [Abstract][Full Text] [Related]
15. Reconstitution of human claspin-mediated phosphorylation of Chk1 by the ATR (ataxia telangiectasia-mutated and rad3-related) checkpoint kinase. Lindsey-Boltz LA; Serçin O; Choi JH; Sancar A J Biol Chem; 2009 Nov; 284(48):33107-14. PubMed ID: 19828454 [TBL] [Abstract][Full Text] [Related]
16. Differential activation of p53 by the various adducts of mitomycin C. Abbas T; Olivier M; Lopez J; Houser S; Xiao G; Kumar GS; Tomasz M; Bargonetti J J Biol Chem; 2002 Oct; 277(43):40513-9. PubMed ID: 12183457 [TBL] [Abstract][Full Text] [Related]
17. REV1 is important for the ATR-Chk1 DNA damage response pathway in Xenopus egg extracts. DeStephanis D; McLeod M; Yan S Biochem Biophys Res Commun; 2015 May; 460(3):609-15. PubMed ID: 25800873 [TBL] [Abstract][Full Text] [Related]
18. 4-Hydroxynonenal induces G2/M phase cell cycle arrest by activation of the ataxia telangiectasia mutated and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) signaling pathway. Chaudhary P; Sharma R; Sahu M; Vishwanatha JK; Awasthi S; Awasthi YC J Biol Chem; 2013 Jul; 288(28):20532-46. PubMed ID: 23733185 [TBL] [Abstract][Full Text] [Related]
19. Mitomycin C and its analog trigger cytotoxicity in MCF-7 and K562 cancer cells through the regulation of RAS and MAPK/ERK pathways. Zacarias O; Clement CC; Cheng SY; Rosas M; Gonzalez C; Peter M; Coopman P; Champeil E Chem Biol Interact; 2024 May; 395():111007. PubMed ID: 38642817 [TBL] [Abstract][Full Text] [Related]
20. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. Pichierri P; Rosselli F EMBO J; 2004 Mar; 23(5):1178-87. PubMed ID: 14988723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]