These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 25565439)
1. Effect of differential drying techniques on PLGA nanoparticles containing hydrophobic and hydrophilic anticancer agents. Dhapare SS; Dash AK Ther Deliv; 2015 Jan; 6(1):27-39. PubMed ID: 25565439 [TBL] [Abstract][Full Text] [Related]
2. Design of nanosuspensions and freeze-dried PLGA nanoparticles as a novel approach for ophthalmic delivery of pranoprofen. Abrego G; Alvarado HL; Egea MA; Gonzalez-Mira E; Calpena AC; Garcia ML J Pharm Sci; 2014 Oct; 103(10):3153-64. PubMed ID: 25091511 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells. Mo L; Hou L; Guo D; Xiao X; Mao P; Yang X Int J Pharm; 2012 Oct; 436(1-2):815-24. PubMed ID: 22846410 [TBL] [Abstract][Full Text] [Related]
4. Development of innovative paclitaxel-loaded small PLGA nanoparticles: study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. Le Broc-Ryckewaert D; Carpentier R; Lipka E; Daher S; Vaccher C; Betbeder D; Furman C Int J Pharm; 2013 Oct; 454(2):712-9. PubMed ID: 23707251 [TBL] [Abstract][Full Text] [Related]
5. Novel powder formulations for controlled delivery of poorly soluble anticancer drug: application and investigation of TPGS and PEG in spray-dried particulate system. Mu L; Teo MM; Ning HZ; Tan CS; Feng SS J Control Release; 2005 Apr; 103(3):565-75. PubMed ID: 15820404 [TBL] [Abstract][Full Text] [Related]
6. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Takashima Y; Saito R; Nakajima A; Oda M; Kimura A; Kanazawa T; Okada H Int J Pharm; 2007 Oct; 343(1-2):262-9. PubMed ID: 17628365 [TBL] [Abstract][Full Text] [Related]
7. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. Bozdag S; Dillen K; Vandervoort J; Ludwig A J Pharm Pharmacol; 2005 Jun; 57(6):699-707. PubMed ID: 15969924 [TBL] [Abstract][Full Text] [Related]
8. Annealing as a tool for the optimization of lyophilization and ensuring of the stability of protein-loaded PLGA nanoparticles. Fonte P; Lino PR; Seabra V; Almeida AJ; Reis S; Sarmento B Int J Pharm; 2016 Apr; 503(1-2):163-73. PubMed ID: 26972381 [TBL] [Abstract][Full Text] [Related]
9. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone. Meeus J; Chen X; Scurr DJ; Ciarnelli V; Amssoms K; Roberts CJ; Davies MC; van Den Mooter G J Pharm Sci; 2012 Sep; 101(9):3473-85. PubMed ID: 22447580 [TBL] [Abstract][Full Text] [Related]
11. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Win KY; Feng SS Biomaterials; 2005 May; 26(15):2713-22. PubMed ID: 15585275 [TBL] [Abstract][Full Text] [Related]
12. Developing combination of artesunate with paclitaxel loaded into poly-d,l-lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Tran BN; Nguyen HT; Kim JO; Yong CS; Nguyen CN Drug Dev Ind Pharm; 2017 Dec; 43(12):1952-1962. PubMed ID: 28724314 [TBL] [Abstract][Full Text] [Related]
13. Augmented anticancer efficacy of doxorubicin-loaded polymeric nanoparticles after oral administration in a breast cancer induced animal model. Jain AK; Swarnakar NK; Das M; Godugu C; Singh RP; Rao PR; Jain S Mol Pharm; 2011 Aug; 8(4):1140-51. PubMed ID: 21557558 [TBL] [Abstract][Full Text] [Related]
14. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Dong Y; Feng SS Biomaterials; 2005 Oct; 26(30):6068-76. PubMed ID: 15894372 [TBL] [Abstract][Full Text] [Related]
15. A novel hybrid delivery system: polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA). Narvekar M; Xue HY; Wong HL Int J Pharm; 2012 Oct; 436(1-2):721-31. PubMed ID: 22850294 [TBL] [Abstract][Full Text] [Related]
16. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Lim HJ; Nam HY; Lee BH; Kim DJ; Ko JY; Park JS Biotechnol Prog; 2007; 23(3):693-7. PubMed ID: 17465527 [TBL] [Abstract][Full Text] [Related]
17. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. Holzer M; Vogel V; Mäntele W; Schwartz D; Haase W; Langer K Eur J Pharm Biopharm; 2009 Jun; 72(2):428-37. PubMed ID: 19462479 [TBL] [Abstract][Full Text] [Related]
18. Poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Dong Y; Feng SS Int J Pharm; 2007 Sep; 342(1-2):208-14. PubMed ID: 17560058 [TBL] [Abstract][Full Text] [Related]
19. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545 [TBL] [Abstract][Full Text] [Related]
20. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Kumar PS; Ramakrishna S; Saini TR; Diwan PV Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]