BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 25565666)

  • 1. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction.
    Deng J; Ren P; Deng D; Bao X
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2100-4. PubMed ID: 25565666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst.
    Ma R; Zhou Y; Chen Y; Li P; Liu Q; Wang J
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14723-7. PubMed ID: 26474079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Graphene Aerogels Decorated with Cobalt Phosphide Nanoparticles as Electrocatalysts for the Hydrogen Evolution Reaction.
    Zhang X; Han Y; Huang L; Dong S
    ChemSusChem; 2016 Nov; 9(21):3049-3053. PubMed ID: 27553782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction.
    Fei H; Yang Y; Peng Z; Ruan G; Zhong Q; Li L; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8083-7. PubMed ID: 25826236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene.
    Wang XL; Tang YJ; Huang W; Liu CH; Dong LZ; Li SL; Lan YQ
    ChemSusChem; 2017 Jun; 10(11):2402-2407. PubMed ID: 28337857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prominent Electron Penetration through Ultrathin Graphene Layer from FeNi Alloy for Efficient Reduction of CO
    Bi Q; Wang X; Gu F; Du X; Bao H; Yin G; Liu J; Huang F
    ChemSusChem; 2017 Aug; 10(15):3044-3048. PubMed ID: 28691286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Onsite Substitution Synthesis of Ultrathin Ni Nanofilms Loading Ultrafine Pt Nanoparticles for Hydrogen Evolution.
    Xiao M; Cheng R; Hao M; Zhou M; Miao Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26101-7. PubMed ID: 26551915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution.
    Zhao Y; Zhao F; Wang X; Xu C; Zhang Z; Shi G; Qu L
    Angew Chem Int Ed Engl; 2014 Dec; 53(50):13934-9. PubMed ID: 25381722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Cobalt Phosphide Nanoparticles Supported on Pristine Graphene by Dynamically Self-Assembled Graphene Quantum Dots for Hydrogen Evolution.
    Wang X; Yuan W; Yu Y; Li CM
    ChemSusChem; 2017 Mar; 10(5):1014-1021. PubMed ID: 28044433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction.
    Yan H; Tian C; Wang L; Wu A; Meng M; Zhao L; Fu H
    Angew Chem Int Ed Engl; 2015 May; 54(21):6325-9. PubMed ID: 25824611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction.
    Zhang Z; Hao J; Yang W; Lu B; Tang J
    Nanoscale; 2015 Mar; 7(10):4400-5. PubMed ID: 25685982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media.
    Su J; Yang Y; Xia G; Chen J; Jiang P; Chen Q
    Nat Commun; 2017 Apr; 8():14969. PubMed ID: 28440269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution.
    Duan J; Chen S; Jaroniec M; Qiao SZ
    ACS Nano; 2015 Jan; 9(1):931-40. PubMed ID: 25559360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction.
    Cheng L; Huang W; Gong Q; Liu C; Liu Z; Li Y; Dai H
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7860-3. PubMed ID: 24838978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution.
    Yuan W; Wang X; Zhong X; Li CM
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20720-9. PubMed ID: 27467887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured SnS-N-doped graphene as an advanced electrocatalyst for the hydrogen evolution reaction.
    Shinde SS; Sami A; Kim DH; Lee JH
    Chem Commun (Camb); 2015 Nov; 51(86):15716-9. PubMed ID: 26364727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifold Nanostructuring and Atomic-Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production.
    Yu J; Wu X; Zhong Y; Yang G; Ni M; Zhou W; Shao Z
    Chemistry; 2018 Sep; 24(52):13800-13806. PubMed ID: 29981182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction.
    Zhang H; Ma Z; Duan J; Liu H; Liu G; Wang T; Chang K; Li M; Shi L; Meng X; Wu K; Ye J
    ACS Nano; 2016 Jan; 10(1):684-94. PubMed ID: 26649629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-index faceted binary-metal selenide nanosheet arrays as efficient 3D electrodes for alkaline hydrogen evolution.
    Yang J; Lei C; Wang H; Yang B; Li Z; Qiu M; Zhuang X; Yuan C; Lei L; Hou Y; Feng X
    Nanoscale; 2019 Oct; 11(38):17571-17578. PubMed ID: 31553015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous Graphene with Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production.
    Qiu HJ; Ito Y; Cong W; Tan Y; Liu P; Hirata A; Fujita T; Tang Z; Chen M
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):14031-5. PubMed ID: 26474177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.