BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 25565973)

  • 1. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.
    Hsieh JY; Ulrich B; Issa FA; Wan J; Papazian DM
    Front Neural Circuits; 2014; 8():147. PubMed ID: 25565973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Analysis of Potassium Channelopathies: Loose Patch Recording of Purkinje Cell Firing in Living, Awake Zebrafish.
    Hsieh JY; Papazian DM
    Methods Mol Biol; 2018; 1684():237-252. PubMed ID: 29058196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish.
    Scalise K; Shimizu T; Hibi M; Sawtell NB
    J Neurophysiol; 2016 Nov; 116(5):2067-2080. PubMed ID: 27512018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.
    Zagha E; Manita S; Ross WN; Rudy B
    J Neurophysiol; 2010 Jun; 103(6):3516-25. PubMed ID: 20357073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit.
    Barmack NH; Shojaku H
    Neuroscience; 1992 Sep; 50(1):1-5. PubMed ID: 1407553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and complex spike firing patterns in Purkinje cells during classical conditioning.
    Rasmussen A; Jirenhed DA; Hesslow G
    Cerebellum; 2008; 7(4):563-6. PubMed ID: 18931885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback control of Purkinje cell activity by the cerebello-olivary pathway.
    Bengtsson F; Svensson P; Hesslow G
    Eur J Neurosci; 2004 Dec; 20(11):2999-3005. PubMed ID: 15579154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells.
    Schultz SR; Kitamura K; Post-Uiterweer A; Krupic J; Häusser M
    J Neurosci; 2009 Jun; 29(25):8005-15. PubMed ID: 19553440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar climbing fibers modulate simple spikes in Purkinje cells.
    Barmack NH; Yakhnitsa V
    J Neurosci; 2003 Aug; 23(21):7904-16. PubMed ID: 12944521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR; Zhu L; Cesa R; Carulli D; Strata P
    Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum.
    Barmack NH; Yakhnitsa V
    J Neurosci; 2011 Jul; 31(27):9824-35. PubMed ID: 21734274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climbing Fiber Regulation of Spontaneous Purkinje Cell Activity and Cerebellum-Dependent Blink Responses(1,2,3).
    Zucca R; Rasmussen A; Bengtsson F
    eNeuro; 2016; 3(1):. PubMed ID: 26839917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.
    Najac M; Raman IM
    J Neurosci; 2015 Jan; 35(2):544-9. PubMed ID: 25589749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination.
    Lohof AM; Mariani J; Sherrard RM
    Eur J Neurosci; 2005 Dec; 22(11):2681-8. PubMed ID: 16324102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infant and adult SCA13 mutations differentially affect Purkinje cell excitability, maturation, and viability in vivo.
    Hsieh JY; Ulrich BN; Issa FA; Lin MA; Brown B; Papazian DM
    Elife; 2020 Jul; 9():. PubMed ID: 32644043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.
    Barmack NH; Yakhnitsa V
    Cerebellum; 2015 Oct; 14(5):597-612. PubMed ID: 26424151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum.
    Brown IE; Bower JM
    J Comp Neurol; 2001 Jan; 429(1):59-70. PubMed ID: 11086289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control.
    Ju C; Bosman LWJ; Hoogland TM; Velauthapillai A; Murugesan P; Warnaar P; van Genderen RM; Negrello M; De Zeeuw CI
    J Physiol; 2019 May; 597(9):2483-2514. PubMed ID: 30908629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex Spike Wars: a New Hope.
    Streng ML; Popa LS; Ebner TJ
    Cerebellum; 2018 Dec; 17(6):735-746. PubMed ID: 29982917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.