These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25566209)

  • 1. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy.
    Brileya KA; Camilleri LB; Zane GM; Wall JD; Fields MW
    Front Microbiol; 2014; 5():693. PubMed ID: 25566209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecies Formate Exchange Drives Syntrophic Growth of
    Day LA; Kelsey EL; Fonseca DR; Costa KC
    Appl Environ Microbiol; 2022 Dec; 88(23):e0115922. PubMed ID: 36374033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth.
    Meyer B; Kuehl J; Deutschbauer AM; Price MN; Arkin AP; Stahl DA
    J Bacteriol; 2013 Mar; 195(5):990-1004. PubMed ID: 23264581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by
    De León KB; Zane GM; Trotter VV; Krantz GP; Arkin AP; Butland GP; Walian PJ; Fields MW; Wall JD
    mBio; 2017 Oct; 8(5):. PubMed ID: 29042504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?
    Ozuolmez D; Na H; Lever MA; Kjeldsen KU; Jørgensen BB; Plugge CM
    Front Microbiol; 2015; 6():492. PubMed ID: 26074892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic modeling of a mutualistic microbial community.
    Stolyar S; Van Dien S; Hillesland KL; Pinel N; Lie TJ; Leigh JA; Stahl DA
    Mol Syst Biol; 2007; 3():92. PubMed ID: 17353934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments.
    Clark ME; Edelmann RE; Duley ML; Wall JD; Fields MW
    Environ Microbiol; 2007 Nov; 9(11):2844-54. PubMed ID: 17922767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional responses of methanogenic archaea to syntrophic growth.
    Walker CB; Redding-Johanson AM; Baidoo EE; Rajeev L; He Z; Hendrickson EL; Joachimiak MP; Stolyar S; Arkin AP; Leigh JA; Zhou J; Keasling JD; Mukhopadhyay A; Stahl DA
    ISME J; 2012 Nov; 6(11):2045-55. PubMed ID: 22739494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Quorum Sensing on the Ability of
    Scarascia G; Lehmann R; Machuca LL; Morris C; Cheng KY; Kaksonen A; Hong PY
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntrophic growth of Desulfovibrio alaskensis requires genes for H2 and formate metabolism as well as those for flagellum and biofilm formation.
    Krumholz LR; Bradstock P; Sheik CS; Diao Y; Gazioglu O; Gorby Y; McInerney MJ
    Appl Environ Microbiol; 2015 Apr; 81(7):2339-48. PubMed ID: 25616787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stable genetic polymorphism underpinning microbial syntrophy.
    Großkopf T; Zenobi S; Alston M; Folkes L; Swarbreck D; Soyer OS
    ISME J; 2016 Dec; 10(12):2844-2853. PubMed ID: 27258948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. σ
    Zhu L; Gong T; Wood TL; Yamasaki R; Wood TK
    Environ Microbiol; 2019 Oct; 21(10):3564-3576. PubMed ID: 31087603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea.
    Skennerton CT; Chourey K; Iyer R; Hettich RL; Tyson GW; Orphan VJ
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-fluorescence in situ hybridization of intact, anaerobic biofilm.
    Brileya KA; Camilleri LB; Fields MW
    Methods Mol Biol; 2014; 1151():189-97. PubMed ID: 24838887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions.
    Okabe S; Ito T; Satoh H
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate.
    Li X; McInerney MJ; Stahl DA; Krumholz LR
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2912-2921. PubMed ID: 21798981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling.
    Martin KJ; Picioreanu C; Nerenberg R
    Biotechnol Bioeng; 2015 Sep; 112(9):1843-53. PubMed ID: 25854894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dual-Species Biofilm with Emergent Mechanical and Protective Properties.
    Yannarell SM; Grandchamp GM; Chen SY; Daniels KE; Shank EA
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30833350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms.
    Santegoeds CM; Ferdelman TG; Muyzer G; de Beer D
    Appl Environ Microbiol; 1998 Oct; 64(10):3731-9. PubMed ID: 9758792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.