These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25566832)

  • 1. Predicted changes in interannual water-level fluctuations due to climate change and its implications for the vegetation of the Florida Everglades.
    van der Valk AG; Volin JC; Wetzel PR
    Environ Manage; 2015 Apr; 55(4):799-806. PubMed ID: 25566832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of the Everglades ridge and slough landscape to climate variability and 20th-century water management.
    Bernhardt CE; Willard DA
    Ecol Appl; 2009 Oct; 19(7):1723-38. PubMed ID: 19831066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential effects of climate change on Florida's Everglades.
    Nungesser M; Saunders C; Coronado-Molina C; Obeysekera J; Johnson J; McVoy C; Benscoter B
    Environ Manage; 2015 Apr; 55(4):824-35. PubMed ID: 25549995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades.
    Flower H; Rains M; Fitz C
    Environ Manage; 2017 Nov; 60(5):989-1009. PubMed ID: 28779184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifting Ground: Landscape-Scale Modeling of Biogeochemical Processes under Climate Change in the Florida Everglades.
    Flower H; Rains M; Carl Fitz H; Orem W; Newman S; Osborne TZ; Ramesh Reddy K; Obeysekera J
    Environ Manage; 2019 Oct; 64(4):416-435. PubMed ID: 31441014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios.
    Orem W; Newman S; Osborne TZ; Reddy KR
    Environ Manage; 2015 Apr; 55(4):776-98. PubMed ID: 25365946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms.
    Glaser PH; Hansen BC; Donovan JJ; Givnish TJ; Stricker CA; Volin JC
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17211-6. PubMed ID: 24101489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of simulated drought on the carbon balance of Everglades short-hydroperiod marsh.
    Malone SL; Starr G; Staudhammer CL; Ryan MG
    Glob Chang Biol; 2013 Aug; 19(8):2511-23. PubMed ID: 23554284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide.
    Larsen LG; Harvey JW
    Am Nat; 2010 Sep; 176(3):E66-79. PubMed ID: 20635883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change.
    Obeysekera J; Barnes J; Nungesser M
    Environ Manage; 2015 Apr; 55(4):749-62. PubMed ID: 25011530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades.
    Catano CP; RomaƱach SS; Beerens JM; Pearlstine LG; Brandt LA; Hart KM; Mazzotti FJ; Trexler JC
    Environ Manage; 2015 Apr; 55(4):807-23. PubMed ID: 25371194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: introduction.
    Aumen NG; Havens KE; Best GR; Berry L
    Environ Manage; 2015 Apr; 55(4):741-8. PubMed ID: 25743272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A common-mesocosm experiment recreates sawgrass (Cladium jamaicense) phenotypes from Everglades marl prairies and peat marshes.
    Richards JH; Olivas PC
    Am J Bot; 2020 Jan; 107(1):56-65. PubMed ID: 31889308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change projected effects on coastal foundation communities of the Greater Everglades using a 2060 scenario: need for a new management paradigm.
    Koch MS; Coronado C; Miller MW; Rudnick DT; Stabenau E; Halley RB; Sklar FH
    Environ Manage; 2015 Apr; 55(4):857-75. PubMed ID: 25312295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes.
    Foti R; del Jesus M; Rinaldo A; Rodriguez-Iturbe I
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6296-300. PubMed ID: 23576751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting water table response to rainfall events, central Florida.
    van Gaalen JF; Kruse S; Lafrenz WB; Burroughs SM
    Ground Water; 2013; 51(3):350-62. PubMed ID: 22834892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discharge competence and pattern formation in peatlands: a meta-ecosystem model of the Everglades ridge-slough landscape.
    Heffernan JB; Watts DL; Cohen MJ
    PLoS One; 2013; 8(5):e64174. PubMed ID: 23671708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.
    Lee SY; Ryan ME; Hamlet AF; Palen WJ; Lawler JJ; Halabisky M
    PLoS One; 2015; 10(9):e0136385. PubMed ID: 26331850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.
    Tietjen B; Schlaepfer DR; Bradford JB; Lauenroth WK; Hall SA; Duniway MC; Hochstrasser T; Jia G; Munson SM; Pyke DA; Wilson SD
    Glob Chang Biol; 2017 Jul; 23(7):2743-2754. PubMed ID: 27976449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.