BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 2556684)

  • 1. Uric acid as radical scavenger and antioxidant in the heart.
    Becker BF; Reinholz N; Ozçelik T; Leipert B; Gerlach E
    Pflugers Arch; 1989 Nov; 415(2):127-35. PubMed ID: 2556684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals.
    Parks DA; Granger DN
    Am J Physiol; 1983 Aug; 245(2):G285-9. PubMed ID: 6309018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different endothelial mechanisms involved in coronary responses to known vasodilators.
    Leipert B; Becker BF; Gerlach E
    Am J Physiol; 1992 Jun; 262(6 Pt 2):H1676-83. PubMed ID: 1621828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of xanthine oxidase inhibitor as free radical scavenger: a novel mechanism of action of allopurinol and oxypurinol in myocardial salvage.
    Das DK; Engelman RM; Clement R; Otani H; Prasad MR; Rao PS
    Biochem Biophys Res Commun; 1987 Oct; 148(1):314-9. PubMed ID: 2823807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide mitigates leukocyte adhesion and vascular leak after myocardial ischemia.
    Kupatt C; Zahler S; Seligmann C; Massoudy P; Becker BF; Gerlach E
    J Mol Cell Cardiol; 1996 Mar; 28(3):643-54. PubMed ID: 9011647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uric acid does not affect the acetylcholine-induced relaxation of aorta from normotensive and deoxycorticosterone acetate-salt hypertensive rats.
    Szasz T; Watts SW
    J Pharmacol Exp Ther; 2010 Jun; 333(3):758-63. PubMed ID: 20215410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of endothelin, protein kinase C and free radicals in the mechanism of the post-ischemic endothelial dysfunction in guinea-pig hearts.
    Maczewski M; Beresewicz A
    J Mol Cell Cardiol; 2000 Feb; 32(2):297-310. PubMed ID: 10722805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial alterations due to free-radical generation.
    Burton KP; McCord JM; Ghai G
    Am J Physiol; 1984 Jun; 246(6 Pt 2):H776-83. PubMed ID: 6331179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation.
    Pellegrini-Giampietro DE; Cherici G; Alesiani M; Carlà V; Moroni F
    J Neurochem; 1988 Dec; 51(6):1960-3. PubMed ID: 2903225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary reperfusion in dogs inhibits endothelium-dependent relaxation: role of superoxide radicals.
    Lawson DL; Mehta JL; Nichols WW
    Free Radic Biol Med; 1990; 8(4):373-80. PubMed ID: 2165976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid.
    Stinefelt B; Leonard SS; Blemings KP; Shi X; Klandorf H
    Ann Clin Lab Sci; 2005; 35(1):37-45. PubMed ID: 15830708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperoxia and xanthine dehydrogenase/oxidase activities in rat lung and heart.
    Elsayed NM; Tierney DF
    Arch Biochem Biophys; 1989 Sep; 273(2):281-6. PubMed ID: 2549869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart.
    Duda M; Konior A; Klemenska E; Beresewicz A
    J Mol Cell Cardiol; 2007 Feb; 42(2):400-10. PubMed ID: 17156794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant defences in rat, pig, guinea pig, and human hearts: comparison with xanthine oxidoreductase activity.
    Janssen M; van der Meer P; de Jong JW
    Cardiovasc Res; 1993 Nov; 27(11):2052-7. PubMed ID: 8287417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of oxygen-derived free radicals in hemorrhagic shock-induced gastric lesions in the rat.
    Itoh M; Guth PH
    Gastroenterology; 1985 May; 88(5 Pt 1):1162-7. PubMed ID: 2984078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of oxygen-derived free radicals in the mechanism of chronic gastric ulceration in the rat: implications for cytoprotection.
    Salim AS
    Digestion; 1989; 43(1-2):113-9. PubMed ID: 2553514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms.
    von Beckerath N; Cyrys S; Dischner A; Daut J
    J Physiol; 1991 Oct; 442():297-319. PubMed ID: 1798031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors.
    Blaise GA; Stewart DJ; Guérard MJ
    Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the physiological function of uric acid.
    Becker BF
    Free Radic Biol Med; 1993 Jun; 14(6):615-31. PubMed ID: 8325534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.